《用字母表示数》教案最新3篇
时间:2023-09-24 02:29:50
数学教学,要紧紧联系学生的生活情境,从学生的经验和已有知识出发,创设有助于学生自主学习,合作交流的情境。这次为您整理了《用字母表示数》教案最新3篇,希望能够帮助到大家。
用字母表示数 篇1
第二课时:用字母表示数(二)
教学内容:教材p47-p48例4 做一做,练习十第4-6题
教学目的:
1、使学生进一步理解用字母表示数的意义和作用。
2、能正确运用字母表示常用数量关系,理解式子的含义。
3、能较熟练地利用公式、常用数量关系求值。
教学重点:能正确运用字母表示常用数量关系。
教学难点:理解字母所表示的含义,知道在含有字母的式子中字母的取值是有一定范围的。
教学准备:投影仪
教学过程:
一、复习。
1、用字母表示数,有哪些好处?但要注意什么?
2、用字母a、b、c表示乘法分配律。
3、用s表示面积,c表示周长,a表示边长,b表示宽,写出长方形、正方形的面积和周长公式。
4、下面各式中,哪些运算符号可以省略?能省略的就省略写出来。
2×3 a×7 14+b a÷7 a×a 5-x 0.6×0.6
二、新授。
导入:我们学过用字母表示运算定律,计算公式,而含有字母的式子还可以表示数量。(板书课题:用含有字母的式子表示数量关系)
1、教学例4(1):
(1)猜一猜老师今年多大了?(指几名学生来猜)
师:老师不告诉你们实际年龄,只告诉你们我比xx同学大23,请你们算一算,xx同学在1岁、2岁、3岁……到现在11岁时,老师各是多少岁?
跟着学生的回答,老师板书:
xx同学的年龄(岁) 老师的年龄(岁)
1 1+23=24
2 2+23=25
请一名同学到黑板上接着写,其他同学在草稿本上写一写。
师:这样的式子还能写下去吗?(师在表下补一栏,并打上省略号)
师:xx同学的年龄在变,老师的年龄也在变,但有没有不变的?
师:这些式子,每个只能表示某一年爸爸的年龄。你能用一个式子表示出任何一年爸爸的年龄吗?(可让同桌的两个同学小声讨论)
结合讨论情况师适时板书:
法1:年龄+23岁=老师的年龄
法2:a+23
提问:比一比,你比较喜欢哪一种表示方法,为什么?让学生发表各自意见。
在式子a+23中,a表示什么?23表示什么?a+23表示什么?
(a表示年龄,30表示老师比xx大的年龄,a+23即表示老师的年龄)
想一想:a可以是哪些数?a能是200吗?为什么?
(3)结合关系式解答:当a=15时,老师的年龄是多少?
2、小结:用含有字母的式子不仅可以表示运算定律、公式,也可以表示数量。
3、教学例4(2):
1969年7月21日,美国宇宙飞船“阿波罗11”号登上月球,首次实现人类登上月球的梦想。在月球上宇航员是跳着走路的,你知道是为什么吗?这是因为月球的引力只有地球的1/6。
引导学生看书讨论:(可分成四人小组进行讨论)
(1)从图、表中你了解到哪些信息?
(2)你能用含有字母的式子表示出人在月球上能举起的质量吗?表中的x表示什么?6x呢?
(3)式子中的字母可以表示哪些数?出示举重记录的小资料。
人的寿命是有限的,能举起的重量也是有限的,因此,字母表示的数也是有限的。
(4)图中小朋友在月球上能举起的质量是多少?
6x=6×15=90,使学生掌握求含有字母算式值的正确写法。
请小组派代表回答以上问题。
4、总结:今天你学会了什么?有哪些收获?
三、巩固练习:
1、独立完成p48做一做 集体评议。
2、独立解答p49 第4题 做完后在投影仪上展示评议。(问问字母、式子表示的含义)
四、作业:
1、独立完成p50 第5题
2、独立完成p50 第6题
解答第6题时可提问:v = t = 让学生掌握三种量之间的数量关系。
注意巡视指导求式子值的书写格式。
即:s=vt=150×30=4500
板书设计:
用字母表示数(二)
例4(1): 例4(2):
法1: 年龄+23岁=老师的年龄 人在月球上能举起的质量是:6a
法2: a+23 小朋友在月球上能举起的质量是:
当a=11时,老师的年龄是: 6a=6×15=90
a+23=11+23=34
教学反思:
本课以学生感兴趣的内容为话题,探讨老师与郑x同学之间的年龄关系,引发学生自主思考,亲近数学,激发起他们对新知的学习热情,拉近了与新知的距离。学生在草稿本上由郑x同学的年龄计算老师年龄时,产生了厌烦的心理,自然而然地想到用更简便的方式来表示老师的年龄。在这一过程中,使学生经历了由数到式的认识过程;在这一过程后,使学生感受到数学的简约美,从而加深了学生对字母表示数的优越性的理解。
困惑:教材50页第5题“鸟的骨骼约是体重的0.05~0.06倍,人的骨骼约是体重的0.18倍。一个人重a千克,骨骼约是( )千克。”按以往老教材的说法,这里只能说人的骨骼约是体重的18%。因为不足1倍,所以只能说是几分之几或零点一八,为何在这题还能以“倍”自居?不知道是否与老教材有所区别。
字母表示数 篇2
用字母表示数和简易方程
教学内容:教科书第144~145页的内容和练习三十四的第1~4题。
教学目的:
使学生加深理解用字母表示数的意义和作用,会用字母表示和常见的数量关系。回根据字母所取的值,求含有字母的式子的值。
使学生加深理解方程的意义,会解简易方程。
教学过程
用字母表示数
复习用字母表示数。
教师:我们知道,用字母表示数可以简明表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。我们通过下面的例子,边回忆、边总结以前学过的内容和方法。
教师:大家先想一想,在一个含有字母的式子里,数字与字母、字母与字母相乘,应该怎样写?例如,a乘以4.5可以怎样写?S乘以h可以怎样写?(a乘以4.5可以写成a×4.5或a·4.5,不可以写成a4.5。S乘以h可以写成S·h或Sh。)
教师指出:除了不能写成a4.5以外,其他都是对的。
用a表示单价,x表示数量,c表示总价,写出下面的数量关系式。
已知单价和数量,求总价的公式;
已知总价和数量,求总价的公式;
已知总价和单价,求数量的公式。
如果每只圆珠笔的价钱是3.75元,要计算买8支圆珠笔要用多少钱,应该用上面的哪个公式?
教师让学生独立解答。巡视时,注意观察学生用的字母和公式的写法是否正确,发现遗忘的要及时辅导,并纠正错误。写完后,集体订正。
教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。学生写完后指名回答。
教师:用a,b,c表示三个自然数,那么同分数相加的计算法则应该怎样写?(a/c+b/c=a+b/c。)
一个商店原有80千克桔子,又运来了12筐桔子,每筐重a千克。
教师指名回答。
80+12a
a=15时,80+12a=80+12×15=260
答:商店一共有260千克桔子。
作教科书第144页“做一做”的题目。
第1题,教师让学生自己做。巡视时,注意观察学生对“a的3倍”与“a的3倍”的结果是怎样选择的。做完后集体订正。
二、简易方程
复习方程的概念。
教师出示复习题:
下列等式,那些是方程,那些不是方程?并说明理由。
19+25=43 5x+4x+8=35 x-2=8
4×3-18÷3=6 3x+5=7 a+4
学生指出:3x+5=7, 5x+4x+8=35, x-2=8是方程。它们是含有未知数的等式;其他的不是方程。
教师:我们知道含有未知数的等式叫做方程。方程的特征是:它含有未知数,同时又是一个等式。
教师:大家会不会解方程?一起解答方程x-2=8。学生解答后,指名回答方程的解(x=10)教师:x=10是方程x-2=8的解。使方程左右两边相等的未知数的值叫做方程的解。求方程的解的过程叫做解方程。我们把方程的解和解方程这两个概念要分析清楚。
复习解简易方程。
例3 解下列方程,并写出检验过程。
3x+5=7 5x+4x+8=35
学生做题时,教师巡视,注意帮助有困难的学生和及时纠正错误。集体订正时,让学生将“ 5x+4x+8=35”的解答过程写在黑板(或投影片)上,说明解答过程中运用到什么运算定律和运算关系。
教师:在解方程的过程中,我们主要是应用了加、减、乘、除法中各部分间的关系和一些运算定律。
做教科书第145页上面的“做一做”的题目。
第1题,让学生独立完成。集体订正时,指名回答并说明理由。
第2题,让学生独立完成。集体订正时着重说明有3到小题,在解答中出现3x=150,方程的解都是x=50。
例4 一个书的1/2比这个数的25%多10,这个数是多少?
让学生独立解答。订正时。指名用口算检验。
做教科书第145页下面的“做一做”的题目。
让学生独立完成。集体订正时,让学生说明哪一题列方程比较容易,哪一题列算式比较容易。
三、小结
教师引导学生分别按照复习的过程叙述和小结复习的内容。
四、作业
练习三十四的第1~4题。
用字母表示数 篇3
教学内容:教科书第144~145页的内容和练习三十四的第1~4题。
教学目的:
使学生加深理解用字母表示数的意义和作用,会用字母表示和常见的数量关系。回根据字母所取的值,求含有字母的式子的值。
使学生加深理解方程的意义,会解简易方程。
教学过程
用字母表示数
复习用字母表示数。
教师:我们知道,用字母表示数可以简明表达数量关系、运算定律和计算公式,为研究和解决问题带来很多方便。我们通过下面的例子,边回忆、边总结以前学过的内容和方法。
教师:大家先想一想,在一个含有字母的式子里,数字与字母、字母与字母相乘,应该怎样写?例如,a乘以4.5可以怎样写?S乘以h可以怎样写?(a乘以4.5可以写成a×4.5或a·4.5,不可以写成a4.5。S乘以h可以写成S·h或Sh。)
教师指出:除了不能写成a4.5以外,其他都是对的。
用a表示单价,x表示数量,c表示总价,写出下面的数量关系式。
已知单价和数量,求总价的公式;
已知总价和数量,求总价的公式;
已知总价和单价,求数量的公式。
如果每只圆珠笔的价钱是3.75元,要计算买8支圆珠笔要用多少钱,应该用上面的哪个公式?
教师让学生独立解答。巡视时,注意观察学生用的字母和公式的写法是否正确,发现遗忘的要及时辅导,并纠正错误。写完后,集体订正。
教师让学生用字母写出加法和乘法的运算定律,平行四边形和梯形的面积计算公式,长方体、圆柱和圆锥的体积计算公式。学生写完后指名回答。
教师:用a,b,c表示三个自然数,那么同分数相加的计算法则应该怎样写?(a/c+b/c=a+b/c。)
一个商店原有80千克桔子,又运来了12筐桔子,每筐重a千克。
教师指名回答。
80+12a
a=15时,80+12a=80+12×15=260
答:商店一共有260千克桔子。
作教科书第144页“做一做”的题目。
第1题,教师让学生自己做。巡视时,注意观察学生对“a的3倍”与“a的3倍”的结果是怎样选择的。做完后集体订正。
二、简易方程
复习方程的概念。
教师出示复习题:
下列等式,那些是方程,那些不是方程?并说明理由。
19+25=43 5x+4x+8=35 x-2=8
4×3-18÷3=6 3x+5=7 a+4
学生指出:3x+5=7, 5x+4x+8=35, x-2=8是方程。它们是含有未知数的等式;其他的不是方程。
教师:我们知道含有未知数的等式叫做方程。方程的特征是:它含有未知数,同时又是一个等式。
教师:大家会不会解方程?一起解答方程x-2=8。学生解答后,指名回答方程的解(x=10)教师:x=10是方程x-2=8的解。使方程左右两边相等的未知数的值叫做方程的解。求方程的解的过程叫做解方程。我们把方程的解和解方程这两个概念要分析清楚。
复习解简易方程。
例3 解下列方程,并写出检验过程。
3x+5=7 5x+4x+8=35
学生做题时,教师巡视,注意帮助有困难的学生和及时纠正错误。集体订正时,让学生将“ 5x+4x+8=35”的解答过程写在黑板(或投影片)上,说明解答过程中运用到什么运算定律和运算关系。
教师:在解方程的过程中,我们主要是应用了加、减、乘、除法中各部分间的关系和一些运算定律。
做教科书第145页上面的“做一做”的题目。
第1题,让学生独立完成。集体订正时,指名回答并说明理由。
第2题,让学生独立完成。集体订正时着重说明有3到小题,在解答中出现3x=150,方程的解都是x=50。
例4 一个书的1/2比这个数的25%多10,这个数是多少?
让学生独立解答。订正时。指名用口算检验。
做教科书第145页下面的“做一做”的题目。
让学生独立完成。集体订正时,让学生说明哪一题列方程比较容易,哪一题列算式比较容易。
三、小结
教师引导学生分别按照复习的过程叙述和小结复习的内容。
四、作业
练习三十四的第1~4题。