首页 > 教学教案 > 初中教案 > 初二教案 > 八年级数学教案6篇正文

八年级数学教案6篇

时间:2023-06-03 07:15:23

作为一位优秀的人民教师,可能需要进行教案编写工作,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。那么问题来了,教案应该怎么写?这次漂亮的小编为您带来了八年级数学教案6篇,您的肯定与分享是对小编最大的鼓励。

初中数学八年级教案案例 篇1

探索勾股定理(二)

教学目标:

1、 经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯。

2、 掌握勾股定理和他的简单应用

重点难点:

重点: 能熟练运用拼图的方法证明勾股定理

难点:用面积证勾股定理

教学过程

七、 创设问题的情境,激发学生的学习热情,导入课题

我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需加以论证,下面就是今天所要研究的内容,下边请大家画四个全等的直角三角形,并把它剪下来,用这四个直角三角形,拼一拼、摆一摆,看看能否得到一个含有以斜边c为边长的正方形,并与同学交流。在同学操作的过程中,教师展示投影1(书中p7 图1—7)接着提问:大正方形的面积可表示为什么?

(同学们回答有这几种可能:(1) (2) )

在同学交流形成共识之后,教师把这两种表示大正方形面积的式子用等号连接起来。

= 请同学们对上面的式子进行化简,得到: 即 =

这就可以从理论上说明勾股定理存在。请同学们去用别的拼图方法说明勾股定理。

八、 讲例

1、 飞机在空中水平飞行,某一时刻刚好飞机飞到一个男孩头顶正上方4000多米处,过20秒,飞机距离这个男孩头顶5000米,飞机每时飞行多少千米?

分析:根据题意:可以先画出符合题意的图形。如右图,图中△ABC的 米,AB=5000米,欲求飞机每小时飞行多少千米,就要知道飞机在20秒的时间里的飞行路程,即图中的CB的长,由于直角△ABC的斜边AB=5000米,AC=4000米,这样的CB就可以通过勾股定理得出。这里一定要注意单位的换算。

解:由勾股定理得

即BC=3千米 飞机20秒飞行3千米,那么它1小时飞行的距离为:

答:飞机每个小时飞行540千米。

九、 议一议

展示投影2(书中的图1—9)

观察上图,应用数格子的方法判断图中的三角形的三边长是否满足

同学在议论交流形成共识之后,老师总结。

勾股定理存在于直角三角形中,不是直角三角形就不能使用勾股定理。

十、 作业

1、 1、课文 P11§1.2 1 、2

2、 选用作业。

八年级数学教案 篇2

知识技能

1、了解两个图形成轴对称性的性质,了解轴对称图形的性质。

2、探究线段垂直平分线的性质。

过程方法

1、经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察。

2、探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力。

情感态度价值观通过对轴对称图形性质的探索,促使学生对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发学生学习的主动性和积极性,并使学生具有一些初步研究问题的能力。

教学重点

1、轴对称的性质。

2、线段垂直平分线的性质。

教学难点体验轴对称的特征。

教学方法和手段多媒体教学

过程教学内容

引入中垂线概念

引出图形对称的性质第一张幻灯片

上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽。那么我们今天继续来研究轴对称的性质。

幻灯片二

1、图中的对称点有哪些?

2、点A和A的连线与直线MN有什么样的关系?

理由?:△ABC与△ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,设AA交对称轴MN于点P,将△ABC和△ABC沿MN对折后,点A与A重合,于是有AP=AP,MPA=MPA=90。所以AA、BB和CC与MN除了垂直以外,MN还经过线段AA、BB和CC的中点。

我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

定义:经过线段的中点并且垂直于这条线段,就叫这条线段的'垂直平分线,也叫中垂线。

八年级数学教案 篇3

一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

1、平移

2、平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。

3、简单的平移作图

①确定个图形平移后的位置的条件:

⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:

⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;

二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1、旋转

2、旋转的性质

⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3、简单的旋转作图

⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成

①确定组合图案中的“基本图案”

②发现该图案各组成部分之间的内在联系

③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

⑸旋转变换与轴对称变换的组合;⑹轴对称变换与平移变换的组合。

八年级数学教案 篇4

学习目标

1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。

2、由坐标的变化探索新旧图形之间的变化。

重点

1、 作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。

2、 根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。

难点

体会极坐标和直角坐标思想,并能解决一些简单的问题

学习过程(导入、探究新知、即时练习、小结、达标检测、作业)

第一课时

学习过程:

一、旧知回顾:

1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。

2、坐标平面内点的坐标的。表示方法____________。

3、各象限点的坐标的特征:

二、新知检索:

1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),

(3,0),(4,-2), (0,0)并用线段依次连接,观察形成了什么图形

三、典例分析

例1、

(1) 将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?

(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?

例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?

(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?

四、题组训练

1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。

(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?

(2)纵、横分别加3呢?

(3)纵、横分别变成原来的2倍呢?

归纳:图形坐标变化规律

1、 平移规律:2、图形伸长与压缩:

第二课时

一、旧知回顾:

1、轴对称图形定义:如果一个图形沿着 对折后两部分完全重合,这样的图形叫做轴对称图形。

中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转 ,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形

二、新知检索:

1、如图,左边的鱼与右边的鱼关于y轴对称。

1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?

2、各个对应顶点的坐标有怎样的关系?

3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?

三、典例分析,如图所示,

1、右图的鱼是通过什么样的变换得到 左图的鱼的。

2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。

3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系

四、题组练习

1、将坐标作如下变化时,图形将怎样变化?

① (x,y)(x,y+4)② (x,y) (x,y-2)③ (x,y) (1/2x , y)

④ (x,y) (3x , y)⑤ (x,y) (x ,1/2y)⑥ (x,y) (3x , 3y)

2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。

3、 如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。

4、 描出下图中枫叶图案关于x轴的轴对称图形的简图。

学习笔记

八年级数学教案 篇5

一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

1.平移

2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。⑶平移不改变图形的大小和形状(只改变图形的位置)。(4)平移后的图形与原图形全等。

3.简单的平移作图

①确定个图形平移后的位置的条件:

⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。

②作平移后的图形的方法:

⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;

二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。

1.旋转

2.旋转的性质

⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。

⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。

⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

⑷旋转前后的两个图形全等。

3.简单的旋转作图

⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。

⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。

⑶已知原图,旋转中心和旋转角,求作旋转后的图形。

三、分析组合图案的形成

①确定组合图案中的“基本图案”

②发现该图案各组成部分之间的内在联系

③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;

⑸旋转变换与轴对称变换的'组合;⑹轴对称变换与平移变换的组合。

八年级数学教案 篇6

一、学习目标:

1、会推导两数差的平方公式,会用式子表示及用文字语言叙述;

2、会运用两数差的平方公式进行计算。

二、学习过程:

请同学们快速阅读课本第27—28页的内容,并完成下面的练习题:

(一)探索

1、计算: (a - b) =

方法一: 方法二:

方法三:

2、两数差的平方用式子表示为_________________________;

用文字语言叙述为___________________________ 。

3、两数差的平方公式结构特征是什么?

(二)现学现用

利用两数差的平方公式计算:

1、(3 - a) 2、 (2a -1) 3、(3y-x)

4、(2x – 4y) 5、( 3a - )

(三)合作攻关

灵活运用两数差的平方公式计算:

1、(999) 2、( a – b – c )

3、(a + 1) -(a-1)

(四)达标训练

1、、选择:下列各式中,与(a - 2b) 一定相等的是( )

A、a -2ab + 4b B、a -4b

C、a +4b D、 a - 4ab +4b

2、填空:

(1)9x + + 16y = (4y - 3x )

(2) ( ) = m - 8m + 16

2、计算:

( a - b) ( x -2y )

3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗?

(四)提升

1、本节课你学到了什么?

2、已知a – b = 1,a + b = 25,求ab 的值

Copyright © 热范文 All Rights Reserved.