八年级上册数学优秀教案优秀10篇
时间:2023-06-06 07:14:26
列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数。这里给大家分享一些关于数学八年级上教案,方便大家学习。的小编精心为您带来了八年级上册数学优秀教案优秀10篇,希望可以启发、帮助到大家。
八年级数学上册教案 篇1
一、知识点:
1、坐标(x,y)与点的对应关系
有序数对:有顺序的两个数x与y组成的数对,记作(x,y);
注意:x、y的先后顺序对位置的影响。
2、平面直角坐标系:
(1)、构成坐标系的各种名称:四个象限和两条坐标轴
(2)、各种特殊点的坐标特点:坐标轴上的点至少有一个坐标
为0;X轴上的点的纵坐标为0,y轴上点的横坐标为0,原点
的坐标为(0,0)。
3、坐标(x,y)的几何意义
平面直角坐标系是代数与几何联系的纽带,坐标(x,y)有某
几何意义,如点A(-3,2)它到x轴、y轴、原点的距离分别是︱x︱
=︱2︱=2,︱y︱=︱-3︱=3,OA = 。
4、注意各象限内点的坐标的符号
点P(x,y)在第一象限内,则x0,y0,反之亦然。
点P(x,y)在第二象限内,则x0,y0,反之亦然。
点P(x,y)在第三象限内,则x0,y0,反之亦然。
点P(x,y)在第四象限内,则x0,y0,反之亦然。
5、平行于坐标轴的直线的点的坐标特点:
平行于x轴(或横轴)的直线上的点的这 纵 坐标相同;
平行于y轴(或纵轴)的直线上的点的 横 坐标相同。
6、各象限的角平分线上的点的坐标特点:
第一、三象限角平分线上的点的横纵坐标 相同 ;
第二、四象限角平分线上的点的横纵坐标 互为相反数 。
7、与坐标轴、原点对称的点的坐标特点:
关于x轴对称的点的横坐标 相同 ,纵坐标 互为相反数
关于y轴对称的点的纵坐标 相同 ,横坐标 互为相反数
关于原点对称的点的横坐标、纵坐标都 互为相反数
8、特殊位置点的特殊坐标:
坐标轴上点P(x,y) 连线平行于坐标轴的点 点P(x,y)在各象限的坐标特点
X轴 Y轴 原点 平行X轴 平行Y轴 第一象限 第二象限 第三象限 第四象限
(x,0) (0,y) (0,0) 纵坐标 相同
横坐标 不同 横坐标 相同
纵坐标 不同
9、利用平面直角坐标系绘制区域内一些点分布情况平面图过程如下:
(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
10、用坐标表示平移:见下图
二、典型训练:
1、位置的确定
1、如图,围棋盘的左下角呈现的是一局围棋比赛中的几手棋。为记录棋谱方便,横线用数字表示。纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为 _____.
2、如图所示的象棋盘上,若帅位于点(1,﹣3)上,相位于点(3,﹣3)上,则炮位于点( )
A、(﹣1,1) B、(﹣l,2) C、(﹣2,0) D、(﹣2,2)
2、平面直角坐标系内的点的特点: 一)确定字母取值范围:
1、点A(m+3,m+1)在x轴上,则A点的坐标为( )
A (0,-2) B、(2,0) C、(4,0) D、(0,-4)
2、若点M(1, )在第四象限内,则 的取值范围是 。
3、已知点P(x,y+1)在第二象限,则点Q(﹣x+2,2y+3)在第 象限。
二)确定点的坐标:
1、点 在第二象限内, 到 轴的距离是4,到 轴的距离是3,那么点 的坐标为( )
A.(-4,3) B.(-3, -4) C.(-3, 4) D.(3, -4)
2、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( )
A、(3,3) B、(﹣3,3) C、(﹣3,﹣3) D、(3,﹣3)
3、在x轴上与点(0,﹣2)距离是4个单位长度的点有 。
4、若点(5﹣a,a﹣3)在第一、三象限角平分线上,则a= 。
三)确定对称点的坐标:
1、P(﹣1,2)关于x轴对称的点是 ,关于y轴对称的点是 ,关于原点对称的点是 。
2、已知点 关于 轴的对称点为 ,则 的值是( )
A. B. C. D.
3、在平面直角坐标系中,将点A(1,2)的横坐标乘以﹣1,纵坐标不变,
得到点A,则点A和点A的关系是( )
A、关于x轴对称 B、将点A向x轴负方向平移一个单位得点A
C、关于原点对称 D、关于y轴对称
3、与平移有关的问题
1、通过平移把点A(2,﹣3)移到点A(4,﹣2),按同样的平移方式,点B(3,1)移到点B,则点B的坐标是 。
2、如图,点A坐标为(-1,1),将此小船ABCD向左平移2个单位,再向上平移3个单位得ABCD.
(1)画出平面直角坐标系;
(2)画出平移后的小船ABCD,
写出A,B,C,D各点的坐标。
3、在平面直角坐标系中,□ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是( )
A.(3,7) B.(5,3) C.(7,3) D.(8,2)
4、建立直角坐标系
1、如图1是某市市区四个旅游景点示意图(图中每个小正方形的边长为1个单位长度),请以某景点为原点,建立平面直角坐标系,用坐标表示下列景点的位置。①动物园 ,②烈士陵园 。
2、如图,机器人从A点,沿着西南方向,行了4 个单位到达B点后,观察到原点O在它的南偏东60的方向上,则原来A的坐标为 (结果保留根号)。
3、如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别是A ,B 。
5、创新题: 一)规律探索型:
1、如图2,已知Al(1,0)、A2(1,1)、A3(-1,1)、A4(-1,-1)、A5(2,-1)、。则点A2015的坐标为________.
二)阅读理解型:
1、在直角坐标系中,我们把横、纵坐标都为整数的点叫做整点,设坐标轴的单位长度为1cm,整点P从原点O出发,速度为1cm/s,且整点P作向上或向右运动(如图1所示。运动时间(s)与整点(个)的关系如下表:
整点P从原点出发的时间(s) 可以得到整点P的坐标 可以得到整点P的个数
1 (0,1)(1,0) 2
2 (0,2)(1,1),(2,0) 3
3 (0,3)(1,2)(2,1)(3,0) 4
根据上表中的规律,回答下列问题:
(1)当整点P从点O出发4s时,可以得到的整点的个数为________个。
(2)当整点P从点O出发8s时,在直角坐标系中描出可以得到的所有整点,并顺次连结这些整点。
(3)当整点P从点O出发____s时,可以得到整点(16,4)的位置。
三、易错题:
1、 已知点P(4,a)到横轴的距离是3,则点P的坐标是_____.
2、 已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是_____.
3、 已知点P(m,2m-1)在x轴上,则P点的坐标是_______.
4、如图,四边形ABCD各个顶点的坐标分别为 (2,8),(11,6),(14,0),(0,0)。
(1)确定这个四边形的面积;
(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标增加2,所得的四边形面积又是多少?
四、提高题:
1、在平面直角坐标系中,点(-2,4)所在的象限是( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
2、若a0,则点P(-a,2)应在 ( )
A.第象限内 B.第二象限内 C.第三象限内 D.第四象限内
3、已知 ,则点 在第______象限。
4、若 +(b+2)2=0,则点M(a,b)关于y轴的对称点的坐标为______.
5、点P(1,2)关于y轴对称点的坐标是 。 已知点A和点B(a,-b)关于y轴对称,求点A关于原点的对称点C的坐标___________.
6、已知点 A(3a-1,2-b),B(2a-4,2b+5)。
若A与B关于x轴对称,则a=________,b=_______;若A与B关于y轴对称,则a=________,b=_______;
若A与B关于原点对称,则a=________,b=_______.
7、学生甲错将P点的横坐标与纵坐标的次序颠倒,写成(m,n),学生乙错将Q点的坐标写成它关于x轴对称点的坐标,写成(-n,-m),则P点和Q点的位置关系是_________.
8、点P(x,y)在第四象限内,且|x|=2,|y| =5,P点关于原点的对称点的坐标是_______.
9、以点(4,0)为圆心,以5为半径的圆与y轴交点的坐标为______.
10、点P( , )到x轴的距离为________,到y轴的距离为_________。
11、点P(m,-n)与两坐标轴的距离___________________________________________________。
12、已知点P到x轴和y轴的距离分别为3和4,则P点坐标为__________________________.
13、点P在第二象限,若该点到x轴的距离为,到y轴的距离为1,则点P的坐标是( )
A.( 1, ) B.( ,1) C.( , ) D.(1, )
14、点A(4,y)和点B(x, ),过A,B两点的直线平行x轴,且 ,则 ______, ______.
15、已知等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为________________.
16、通过平移把点A(2,-3)移到点A(4,-2),按同样的平移方式,点B(3,1)移到点B,则点B的坐标是_____________.
17、如图11,若将△ABC绕点C顺时针旋转90后得到△ABC,则A点的对应点A的坐标是( )
A.(-3,-2) B.(2,2) C.(3,0) D.(2,1)
18、平面直角坐标系 内有一点A(a,b),若ab=0,则点A的位置在( )。
A.原点 B. x轴上 C.y 轴上 D.坐标轴上
19、已知等边△ABC的两个顶点坐标为A(-4,0)、B(2,0),则点C的坐标为______,△ABC的面积为______.
20、(1)将下图中的各个点的纵坐标不变,横坐标都乘以-1,与原图案相比,所得图案有什么变化?
(2)将下图中的各个点的横坐标不变,纵坐标都乘以-1,与原图案相比,所得图案有什么变化?
(3)将下图中的各个点的横坐标都乘以-2,纵坐标都乘以-2,与原图案相比,所得图案有什么变化?
八年级数学上册教案 篇2
为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
情境设置:
汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。
(1)你能用含v的代数式来表示t吗?
(2)时间t是速度v的函数吗?
设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。
为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。
一般式变形:(其中k均不为0)
通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。
为加深难度,我又补充了几个练习:
1、为何值时,为反比例函数?
2是的反比例函数,是的正比例函数,则与成什么关系?
关于课堂教学:
由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。
在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。
对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。
而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。
经验感想:
1、课前认真准备,对授课效果的影响是不容忽视的。
2、教师的精神状态直接影响学生的精神状态。
3、数学教学一定要重概念,抓本质。
4、课堂上要注重学生情感,表情,可适当调整教学深度。
初二数学上册教案 篇3
教学目标
1知识与技能目标
(1)通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性。
(2)能判断给出的数是否为无理数,并能说出理由。
2过程与方法目标
(1)学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养学生的动手能力和合作精神。
(2)通过回顾有理数的有关知识,能正确地进行推理和判断识别某些数是否为有理数、无理数,训练他们的思维判断力。
(3)借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力。
3情感与态度目标
(1)激励学生积极参与教学活动,提高大家学习数学的热情。
(2)引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作精神与钻研精神,借助计算器进行估算。
(3)了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋半的献身精神。
教学重点
1让学生经历无理数发现的过程,感知生活中确实存在着不同于有理数的数。
2会判断一个数是否为有理数,是否不是有理数。
3用计算器进行无理数的估算。
教学难点
1把两个边长为1的正方形拼成一个大正方形的动手操作过程。
2无理数概念的建立及估算。
3判断一个数是否为有理数。
教学准备:多媒体,两个边长为1的正方形,剪刀,短绳。
教学过程:
第一环节:章节引入(2分钟,学生阅读感受)
内容:.小红是刚升入八年级的新生,一个周末的上午,当工程师的爸爸给小红出了两个数学题:
(1)两个数3.252525……与3.252252225……一样吗?它们有什么不同?
(2)一个边长为6cm的正方形木板,按如图的痕迹锯掉四个一样的直角三角形。请计算剩下的正方形木板的面积是多少?剩下的正方形木板的边长又是多少厘米呢?你能帮小红解决这个问题吗?
b.你能求出面积为2的正方形的边长吗?你知道圆周率的精确值吗?它们能用整数或分数(即有理数)来表示吗?
第二环节:复习引入(3分钟,学生口答)
内容:阅读下面的资料,在数学中,有理数的定义为:形如的数(p、q为互质的整数,且p≠0)叫做有理数,当p=1,q为任意整数时,有理数就是指所有的整数,如:=-2等,当p≠1时,由p、q互质可知,有理数就是指所有的分数,如,-,-等,综上所述,有理数就是整数和分数的统称。
请用上述材料中所涉及的知识证明下面的问题:
a.直角边长分别为3和1的直角三角形的斜边长是不是有理数?
b.复习前面学过的数,有理数包括整数和分数,有理数范围是否满足实际生活的需要呢?
第三环节:活动探究(15分钟,学生动手操作,小组合作探究)
(一)发现新数
内容:将课前已准备好的两个边长为1的小正方形剪一剪,拼一拼,设法得到一个大正方形。
在学生活动的基础上,教师利用多媒体展示其中一种剪拼过程,并抛出下面的议一议:
(1)设大正方形的边长为,应满足什么条件?
(2)满足:2=2的数是一个什么样的数?可能是整数吗?说明你的理由?
(3)可能是分数吗?说说你的理由?
引出课题《数怎么又不够用了》
(二)感受新数的广泛性
内容:面积为5的正方形,它的边长b可能是有理数吗?说说你的理由。
(三)巩固验证,应用拓展
内容:aB,C是一个生活小区的两个路口,BC长为2千米,A处是一个花园,从A到B,C两路口的距离都是2千米,现要从花园到生活小区修一条最短的路,这条路的长可能是整数吗?可能是分数吗?说明理由。
b如图(1)是由16个边长为1的小正方形拼成的,试从连接这些
小正方形的两个顶点所得的线段中,分别找出两条长度是有理数的线段,两条长度不是有理数的线段
第四环节:介绍历史,开阔视野(3分钟,学生阅读)
内容:早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述。后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说,为此希伯斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来,古希腊人终于正视了希伯索斯的发现。
第五环节:课时小结(2分钟,全班交流)
内容谈谈本节课你有什么收获与体会?有哪些困难需要别人帮你解决?
b感受数不够用了,会确定一个数是有理数或不是有理数。
c本节课用到基本方法:动手、操作、观察、思考,猜想验证,推理,归纳等过程,获取数学知识。
第六环节:布置作业
八年级数学上册教案 篇4
教学目标
知识与能力:
1.运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法.
2.理解平行四边形的另一种判定方法,并学会简单运用.
过程与方法:
1.经历平行四边行判别条件的'探索过程,在有关活动中发展学生的合情推理意识.
2.在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生的逻辑思维能力和推理论证的表达能力.
情感、态度与价值观:
通过平行四边形判别条件的探索,培养学生面对挑战,勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.
教学方法启发诱导式 教具 三角尺
教学重点平行四边形判定方法的探究、运用.
教学难点对平行四边形判定方法的探究以及平行四边形的性质和判定的综合运用
教学过程:
第一环节 复习引入:
问题1:
1.平行四边形的定义是什么?它有什么作用?
2.判定四边形是平行四边形的方法有哪些?
(1)两组对边分别平行的四边形是平行四边形。
(2)一组对边平行且相等的四边形是平行四边形。
(3)两条对角线互相平分的四边形是平行四边形。
第二环节 探索活动
活动:
工具:两对长度分别相等的木条。
动手:能否在平面内用这四根笔摆成一个平行四边形?
思考1.1:你能说明你所摆出的四边形是平行四边形吗?
已知:四边形ABCD中,AD=BC,AB=CD. 试说明四边形ABCD是平行四边形。
思考1.2:以上活动事实,能用文字语言表达吗?
学生以小组为单位,利用课前准备好的学具动手操作、观察,完成探究活动1,共同得到:
(1)只有将两两相等的木条分别作为四边形的两组对边才能得到平行四边形.
(2)通过观察、实验、猜想到:
两组对边分别相等的四边形是平行四边形.
在此活动中,教师应重点关注:
(1)学生在拼四边形时,能否将相等两木条作为四边形的对边;
(2)转动四边形,改变它的形状的过程中,能否观察得到在此过程中它始终是一个平行四边形;
(3)学生能否通过独立思考、小组合作得出正确的证明思路.
第三环节 巩固练习
例1 如图:在四边形ABCD中,∠1=∠2,∠3=∠4.四边形ABCD是平行四边形吗?为什么?
八年级数学上册教案例2 如图所示,AC=BD=16,AB=CD=EF=15,CE=DF=9,图中有哪些互相平行的线段?
随堂练习
1.判断下列说法是否正确
(1)一组对边平行且另一组对边相等的四边形是平行四边形 ( )
(2)两组对角都相等的四边形是平行四边形 ( )
(3)一组对边平行且一组对角相等的四边形是平行四边形 ( )
(4)一组对边平行,一组邻角互补的四边形是平行四边形 ( )
2.有两条边相等,并且另外的两条边也相等的四边形一定是平行四边形吗?为什么?
3.如图所示,四个全等的三角形拼成一个大的三角形,找出图中所有的平行四边形,并说明理由.
4.如图:AD是ΔABC的边BC边上的中线。
(1)画图:延长AD到点E,使DE=AD,连接BE,CE;
(2)判断四边形ABEC的形状,并说明理由。
第四环节 小结:
师生共同小结,主要围绕下列几个问题:
(1)判定一个四边形是平行四边形的方法有哪几种?
(2)我们是通过什么方法得出平行四边形的这几种判定方法的,这样的探索过程对你有什么启发?
(3)平行四边形判定的应用 集备意见 个案补充
初二数学上册教案 篇5
一、学生起点分析
《平面直角坐标系》是八年级上册第五章《位置与坐标》第二节内容。本章是“图形与坐标”的主体内容,不仅呈现了“确定位置的多种方法、平面直角坐标系”等内容,而且也从坐标的角度使学生进一步体会图形平移、轴对称的数学内涵,同时又是一次函数的重要基础。《平面直角坐标系》反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。
二、教学任务分析
教学目标设计:
知识目标:
1、理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念;
2、认识并能画出平面直角坐标系;
3、能在给定的直角坐标系中,由点的位置写出它的坐标。
能力目标:
1、通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识;
2、通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。
情感目标:
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。
教学重点:
1、理解平面直角坐标系的有关知识;
2、在给定的平面直角坐标系中,会根据点的位置写出它的坐标;
3、由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。
教学难点:
1、横(或纵)坐标相同的点的连线与坐标轴的关系的探究;
2、坐标轴上点的坐标有什么特点的总结。
三、教学过程设计
第一环节感受生活中的情境,导入新课
同学们,你们喜欢旅游吗?假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5— 6),回答以下问题:
(1)你是怎样确定各个景点位置的?
(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?
(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?
在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?
第二环节分类讨论,探索新知
1、平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。
学生自学课本,理解上述概念。
2、例题讲解
(出示投影)例1
例1写出图中的多边形ABCDEF各顶点的坐标。
3.2平面直角坐标系:课后练习
一、选择题(共9小题,每小题3分,满分27分)
1、若点A(﹣2,n)在x轴上,则点B(n﹣1,n+1)在()
A、第四象限B、第三象限C、第二象限D、第一象限
【考点】点的坐标。
【专题】计算题。
【分析】由点在x轴的条件是纵坐标为0,得出点A(﹣2,n)的n=0,再代入求出点B的坐标及象限。
【解答】解:∵点A(﹣2,n)在x轴上,
∴n=0,
∴点B的坐标为(﹣1,1)。
则点B(n﹣1,n+1)在第二象限。
故选C。
【点评】本题主要考查点的坐标问题,解决本题的关键是掌握好四个象限的点的坐标的特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负。
2、已知点M到x轴的距离为3,到y轴的距离为2,且在第三象限。则M点的坐标为()
A、(3,2)B、(2,3)C、(﹣3,﹣2)D、(﹣2,﹣3)
【考点】点的坐标。
【分析】根据到坐标轴的距离判断出横坐标与纵坐标的长度,再根据第三象限的点的坐标特征解答。
【解答】解:∵点M到x轴的距离为3,
∴纵坐标的长度为3,
∵到y轴的距离为2,
∴横坐标的长度为2,
∵点M在第三象限,
∴点M的坐标为(﹣2,﹣3)。
故选D。
【点评】本题考查了点的坐标,难点在于到y轴的距离为横坐标的长度,到x轴的距离为纵坐标的长度,这是同学们容易混淆而导致出错的地方。
3.2平面直角坐标系同步测试题
1.点A(3,—1)其中横坐标为XX,纵坐标为XX。
2.过B点向x轴作垂线,垂足点坐标为—2,向y轴作垂线,垂足点坐标为5,则点B的坐标为。
3.点P(—3,5)到x轴距离为XX,到y轴距离为XX。
数学八年级上教案 篇6
一、学习目标
1.多项式除以单项式的运算法则及其应用。
2.多项式除以单项式的运算算理。
二、重点难点
重点:多项式除以单项式的运算法则及其应用。
难点:探索多项式与单项式相除的运算法则的过程。
三、合作学习
(一)回顾单项式除以单项式法则
(二)学生动手,探究新课
1.计算下列各式:
(1)(am+bm)÷m;
(2)(a2+ab)÷a;
(3)(4x2y+2xy2)÷2xy。
2.提问:
①说说你是怎样计算的;
②还有什么发现吗?
(三)总结法则
1.多项式除以单项式:先把这个多项式的每一项除以__________X,再把所得的商______
2.本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3—6a2+3a)÷3a;
(2)(21x4y3—35x3y2+7x2y2)÷(—7x2y);
(3)[(x+y)2—y(2x+y)—8x]÷2x;
(4)(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。
随堂练习:教科书练习。
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;
E、多项式除以单项式法则。
八年级上册数学的教案 篇7
三角形的证明
1、等腰三角形
①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)
②全等三角形的对应边相等、对应角相等
③定理:等腰三角形的两底角相等,即位等边对等角
④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合
⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°
⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)
⑦定理:三个角都相等的三角形是等边三角形
⑧定理;有一个角等于60°的等腰三角形是等边三角形
⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
2、直角三角形
①定理:直角三角形的两个锐角互余
②定理有两个角互余的三角形是直角三角形
③勾股定理:直角三角形两条直角边的平方和等于斜边的平方
④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形
⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题
⑥一个命题是真命题,它的逆命题不一定是真命题。如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理
⑦定理:斜边和一条直角边分别相等的两个直角三角形全等
3、线段的垂直平分线
①定理:线段垂直平分线上的点到这条线段两个端点的距离相等
②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上
4、角平分线
①定理:角平分线上的点到这个角的两边的距离相等
②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上
初二数学上册教案 篇8
教学目标:
知识与技能:会解含有分母的一元一次不等式;能够用不等式表达数量之间的不等关系;能够确定不等式的整数解。
过程与方法:经历解方程和解不等式两种过程的比较,体会类比思想,发展学生的数学思考水平。
情感态度、价值观:通过一元一次不等式的学习,培养学生认真、坚持等良好学习习惯。.
教材分析:
本节教材首先让学生动手做一做解两个不等式;之后让大家谈谈解一元一次不等式与解一元一次方程的异同点;最后是关于通过列不等式表示数量之间不等关系的例题2、3,其中例3涉及到了不等式的正解数解问题。关于解含有分母的一元一次不等式,学生在去分母这一部可能容易出错,可以采用通过学生深度解决、师生总结交流方法、巩固应用等方式处理。关于一元一次不等式的整数解问题,学生确实会有一定困难,主要是思考不够认真,缺少方法等原因,教师要注重借助数轴的学法指导。
教学重点:
1、含有分母的一元一次不等式的解法
2、用不等式表达数量之间的不等关系
3、确定不等式的整数解
教学难点:
1、解含有分母的一元一次不等式时,去分母这一部的准确性。
2、不等式的整数解的确定
教学流程:
一、直接引入
我们学习了解一元一次方程和解一元一次不等式,它们之间有怎样的区别和联系呢今天我们来探究一下。
二、探究新知
(一)解一元一次方程和解一元一次不等式的异同点
1、出示问题,让学生板演
找两名同学,分别解下面两个问题:
(1)解方程:﹦
(2)解不等式:
2、小组讨论解一元一次方程和解一元一次不等式的过程的异同点。
3、师生交流。
相同点:解一元一次方程和解一元一次不等式的步骤相同,依次为:去分母去括号移项,合并同类项化系数为1。
不同点:在解一元一次不等式的化系数为1时,要注意不等式两边乘或除以同一个负数时,不等号要改变方向。
4、运用新知。
将下列不等式中的分母化去:
八年级数学上册教案 篇9
Ⅰ。教学任务分析
教学目标
知识与技能 使学生理解正比例函数的概念,会用描点法画正比例函数图象,掌握正比例函数的性质。
过程与能力 培养学生数学建模的能力。
情感与态度 实例引入,激发学生学习数学的兴趣。
教学重点 探索正比例函数的性质。
教学难点 从实际问题情境中建立正比例函数的数学模型。
Ⅱ。教学过程设计
问题及师生行为 设计意图
一、创设问题,激发兴趣
【问题1】将下列问题中的变量用函数表示出来:
(1)小明骑自行车去郊游,速度为4km/h,其行驶路程y随时间x变化而变化;
(2)三角形的底为10cm,其面积y随高x的变化而变化;
(3)笔记本的单价为3元,买笔记本所要的钱数y随作业本数量x的变化而变化。
解:(1)y=4x;(2)y=5x;(3)y=3x.
教师提出问题,学生独立思考并回答问题。
教师点评,并且提醒学生注意用x表示y. 问题引入,为新知作好铺垫。
二、诱导参与,探究新知
思考:观察函数关系式:
① y=4x; ② y=5x; ③ y=3x.
这些函数有什么特点?
都是y等于一个常量与x的乘积。
教师提出问题,并引导学生观察:
学生观察思考并回答问题。
三、引导归纳,提炼新知
(板书)正比例函数的概念:
一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
注意:x 的取值范围是全体实数。
由教师引导,学生观察得出结论。体现学生为主体,教师为主导的关系。
通过板书,突出本节课的重点。
四、指导应用,发展能力
1、下列函数是否是正比例函数?比例系数是多少?
(1) 是,比例系数k=8. (2) 不是。
(3) 是,比例系数k= 。 (4) 不是。
填空
1、若函数y=(2m2+8)xm2-8+(m+3)是正比例函数,则m的值是___-3____.
题 1请学生口答, 题2学生独立完成,并到黑板板书,教师评价书写规范。
在本次活动中,教师要关注:
学生能否准确地理解正比例函数的定义,注意二次项系数不能为0.
五、探究新知
例1 画出正比例函数y=x的图象。
解:(1)列表:
x --- -2 -1 0 1 2 ---
y --- -2 -1 0 1 2 ---
画出函数y=x的图象。
(1)列表: (2)描点: (3)连线:
想一想
除了用描点法外,还有其他简单的方法画正比例函数图象吗?
根据两点确定一条直线,我们可以经过原点与点(1,k)画直线,即两点法。
同理,画出y=-x的图象。
师生共同分析:两个图象的共同点:都是经过原点的直线。不同点:函数y=x的图象从左向右呈上升状态,即随着x的增大y也增大,经过第一、三象限。
函数y=-x的图象从左向右呈下降状态,即随x增大y反而减小,经过第二、四象限。
归纳:一般地,正比例函数y=kx(k是常数,k≠ 0)的图象是一条经过原点的直线。
当k>0时,图象经过一、三象限,从左向右上升,即随x的增大y也增大;
当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小。
由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.
六、指导应用,发展能力
例2 在同一直角坐标系中画出y=x,y=2x,y=3x的函数图象,并比较它们的异同点。
相同点:图象经过一、三象限,从左向右上升;
不同点:倾斜度不同, y=x,y=2x,y=3x的函数图象离y轴越来越近。
例3 在同一直角坐标系中画出y=-x,y=-2x,y=-3x的函数图象,并比较它们的异同点。
相同点:图象经过二、四象限,从左向右下降;
不同点:倾斜度不同, y=-x,y=-2x,y=-3x的函数图象离y轴越来越近。
在y=kx中,k的绝对值越大,函数图象越靠近y轴。
初二数学上册教案 篇10
1、教材分析
(1)知识结构:
(2)重点和难点分析:
重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。
难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。
2、教法建议
(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。
(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。
(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。
(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。
一、素质教育目标
(一)知识教学点
1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。
2、了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力训练点
1、通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2、通过推导四边形内角和定理,对学生渗透化归思想。
3、会根据比较简单的条件画出指定的四边形。
4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美。
二、学法引导
类比、观察、引导、讲解
三、重点难点疑点及解决办法
1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2、教学难点:理解四边形的。有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
四、课时安排
2课时
五、教具学具准备
投影仪、胶片、四边形模型、常用画图工具
六、师生互动活动设计
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第一课时
七、教学步骤
【复习引入】
在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这一
章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。
【引入新课】
用投影仪打出课前画好的教材中P119的图。
师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。
【讲解新课】
1、四边形的有关概念
结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:
(1)要结合图形。
(2)要与三角形类比。
(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。
(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。
(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。
(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。
2、四边形内角和定理
教师问:
(1)在图4—3中对角线AC把四边形ABCD分成几个三角形?
(2)在图4—6中两条对角线AC和BD把四边形分成几个三角形?
(3)若在四边形ABCD如图4—7内任取一点O,从O向四个顶点作连线,把四边形分成几个三角形。
我们知道,三角形内角和等于180,那么四边形的内角和就等于:
①2180=360如图4
②4180—360=360如图4—7。
例1已知:如图48,直线于B、于C。
求证:(1) (2) 。
本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。
【总结、扩展】
1、四边形的有关概念。
2、四边形对角线的作用。
3、四边形内角和定理。
八、布置作业
教材P128中1(1)、2、 3。
九、板书设计
四边形有关概念
四边形内角和
例1
十、随堂练习
教材P122中1、2、3。