《比的意义》教案12篇
时间:2024-09-03 07:29:44
作为一名教师,总归要编写教案,借助教案可以有效提升自己的教学能力。那么优秀的教案是什么样的呢?
内容导航
教学过程: 篇1小学数学《比的意义》教案 篇2《比的意义》教学设计 篇3教学目标: 篇4引探实践 篇5比的意义优秀教学设计 篇6比的意义教案 篇7比的意义教案 篇8《比的意义》教案 篇9比的意义教案教学设计 篇10《比的意义》教学设计 篇11比的意义优秀教学设计 篇12教学过程: 篇1
一、引探准备
口答:⒈求一个数是另一个数的几倍或几分之几,怎样计算?
⒉分数和除法有什么联系和区别?
小学数学《比的意义》教案 篇2
教学内容:
人教版九年制义务教育五年制小学数学第十册第125-129页。
教学目的:
1、使学生进一步理解整数、分数、小数等概念的意义,沟通知识之间的联系和区别。
2、通过自主探索和合作学习使学生在整理复习中形成知识网络学会均提高综合运用能力。
3、结合教学,渗透人文主义教育和事物之间是互相联系的辩证唯物启蒙教育。
教学重、难点:
进一步理解整数、分数、小数等概念的意义,沟通联系,形成知识网络。
教具准备:
多媒体课件,练习纸等。
教学过程:
一、联系实际,引入课题
1、课件展示信息报道)据统计,去年我国城镇居民人均可支配收入为6280元,实际增长6.4%;全国基本普及九年义务教育通过验收的人口地区覆盖率达到85%;国有及国有控股企业实现利润为比去年增加1.4倍。人均公共绿地面积从3又9/20平方米提高到6又13/25平方米。第五次全国人口普查统计公布,我国总人口数为1295330000人,平均每个家庭的人口为3.44人,我国计划生育政策取得明显成效。
2、从这组信息报道中,同学们主能感受到什么?你是怎么看出的?
3、揭示课题:数学在我们生活中应用非常广泛,我们的生产、生活都离不开数,这节课我们就来整理和复习数的意义、
二、复习整理,形成网络
1、分组合作,根据以前学过的知识,把信息中的数据分分类。(用展示台展示反馈)
2、分类整理,沟通联系。
(1)整数。
①请同学们举几个用整数表示的例子。
②哪些数属于整数呢?(自然数、0、…、、)
③自然数的意义和单位是怎样的?请同学们看书回顾。(师板书复习步骤)
④介绍自然数的产生,引入我国著名数学家华罗庚爷爷的名言--数起源于数
(2)分数、小数。
①现在请同学们自己来整理复习分数和小数,看看你们打算从哪几方面来整理?(分组讨论)
②根据同学们讨论的结果,请同学们带着问题,看书回顾、分类整理。
③小组分类汇报结果,并围绕整理结果提几个问题,随意点同学回答并作出评价。
(3)百分数
①现在我们还有什么数没有复习?
②百分数的意义是怎样的?
③请同学们举几个用百分数表示的例子。
④介绍几个百分数实际应用的例子。(课件展示)
胶东乡粮食产量比去年增加三成。
百货大楼的帽子按八五折出售。
某针织厂抽查了50件针织内有衣,其中49件为合格产品,合格率为xx%。
20xx年我国人口自然增长率控制在1%以内。
⑤分组讨论:百分数和分数之间有什么联系和区别?
3、形成网络。(课件)意义(略)
(2)复习计数单位、数位、进率等概念。
(3)让学生自由看数位顺序表提问质疑。
5、小结板书
三、综合运用,拓展提高
(课件展示)
《比的意义》教学设计 篇3
教学内容
方程的意义(人教版义务教育课程标准实验教材五年级上册第四单元第二小节解简易方程的第一课时)
教学理念
新课标要求数学课程的培养目标要面向全体学生,适应学生个性发展的需要,使得人人都获得良好的数学教育,不同的人在数学上得到不同的发展。让学生获得数学活动经验,培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果。学会用图形思考、想象问题,能从“数”与“形”两个角度认识数学。
教学策略
本节课我根据盲生因视觉障碍,对事物缺少整体感知,不能准确地理解抽象的数学观念这一特点,我充分利用直观创设情境,恰当地构造数学问题,将抽象的数学关系具体化,调动学生的直观思维;让学生经历观察、感知、思考、猜想、验证、分类比较、归纳概括的过程。通过数形结合的方法实现抽象与具体之间的转变。
内容分析
方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,从未知数只是结果到未知数参加运算,是学生学习数学方法的一次提升;也是学生又一次接触初步代数思想,是思维的一次飞跃。代数思维是数学学习的"核心思想",本课教学内容是学生从算术思维到代数思维的过渡。
教学目标
1.根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。
2.使学生在观察、感知、思考、猜想、验证、分类比较、归纳概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成方程模型的思想,掌握研究问题的方法。
3.分类分层教学,在学生学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。
教学重点
结合具体情境理解方程的意义,用方程表示简单的等量关系。
教学难点
从算术思维到代数思维的过渡。
教学准备
玩具天平塑料香蕉小袋子多媒体课件、盲文及低视力卡片
教学过程
一、创设情境,抽象出等量关系
(一)依据天平,理解相等,
1、认识天平
同学们认识天平吗?知道天平是干什么用的吗?(称质量、比较物体的质量)那天平是根据什么来称量或者比较物体的质量?(平衡)让学生用玩具天平来感知一下平衡(低视生看,老师协助全盲生用手慢慢向上托,直到手掌触到物体)
再让学生用自己的身体仿照小猴子的样子来演示一下平衡。如果左边重呢?怎样演示?右边重呢?
2、理解相等
低视力生看大屏幕,根据自己看到的画面,帮助全盲生把实物挂起来(天平左面有60克和40克的香蕉,右面有100克的香蕉)
天平此时的状态怎么样哪?(低视力生观察,全盲生感知。)天平平衡说明什么?(左右两边质量相等)
能用数学式子表示出来吗?
预设:40+60=100 60+40=100(板书)。
像这样含有等号的式子我们叫它等式。
3、让学生再说几个等式。
(二)依据天平,理解不相等
1、理解不相等
如果把左边40克的香蕉拿下去了,天平会怎样?(预设:左边轻,右边重。)
此时天平的状态又怎样哪?(不平衡。)低视生观察,全盲生感知。
让学生用一个数学式子表示。(预设:60<100,100>60 。
刚才相等的式子叫等式,这样不相等的呢?(预设:不等式,或不知道。)
2、让学生再说几个不等式。
(三)依据天平,理解含有字母的等式与不等式
1、猜想:如果把一个袋子放到天平的左边,天平会怎么样?可能会出现哪些情况?
2、交流。(预设:左边重,右边轻;右边重,左边轻;一样重。)
3、验证:低视力生协助全盲生操作验证(教师协助)
4、以小组为单位,低视生记录三种状态下的数学式子。预设(60+x=100;60+x>100;60+x
(四)依据心中的天平理解等量关系
1、谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了(把玩具天平收起来)
还有天平吗?(预设:没有。)
你心中的天平还有没有?(有)
2、出示课件:
3、低视力生看大屏幕,并叙述图意。
4、思考:用心里的小天平摆放一下:左面放?右面放?此时你的小天平是什么样的状态?说明什么?
5、让学生用数学式子表示出来。(预设:5x=800)并让学生说一说5x表示的意思。(预设:5x是5个苹果的质量)
6、说一说:5个苹果的质量为什么用5x来表示?(预设:因为一个苹果的质量不知道,可以用x表示,5个苹果的质量就用5x来表示。)
7、评价:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。
二、引导学生给式子分类,抽象概括出方程的意义
(一)式子分类,揭示方程的意义。
1、一小组为单位,让学生拿出自己的卡片,给刚才的式子分类。并思考分类标准。
2、学生交流(预设:
1、按是否是等式来分。
2、是否含有字母来分。
3、还有学生把60+x=100,5x=800单分一类)
3、教师揭示:象60+x=100,5x=800就是方程
4、让学生根据这两个式子的特点说一说什么叫方程?
5、教师点题:含有未知数的等式叫做方程
(二)探讨并揭示等式与方程的关系。
1、让学生试着说一说方程与等式的关系。
2、学生交流
3、教师引导:如果方程是一个大圆,方程应该是什么?(预设:一个小圆,在大圆中)
三、巩固拓展、应用概念
刚才我们认识了方程,你能判断什么是方程吗?
1.应用概念,判断方程
判断下面的式子是否是方程。(提问C类学生)
x+5 15+5=20 2x +3>10 36-x=9×3 2.应用概念,解决问题。
(1)课件出示:(提问B类学生)
(2)低视力生看大屏幕,并帮全盲生叙述图意。
(3)谈话:能用方程表示出来吗?(预设:6a=24.6)
(4)追问:6a表示什么?
(5)课件出示:(提问A、B类学生)
教法同上
(6)课件出示:(提问A类学生)
(7)先让低视生说说这幅图的意思?
(预设:1000毫升刚好能倒满2个大杯子和一个小杯子;2个大杯子和1个小杯子的盛奶量就是1000毫升。)(8)找等量关系,并列出方程
(9)评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。
四、回顾反思 总结提升这节课你学到了什么?
(结合学生的回答,小结)
五、作业:
(1)练习十一第一题
(2)根据今天学习的知识,编一个关于方程的数学故事
教学内容:苏教版四年级(第八册)教学目标:
(1)使学生理解方程概念,感受方程思想。
(2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
教学目标: 篇4
1.通过教师的讲解及学生的观察、思考、讨论、自学等活动,使学生理解比的意义,掌握比各部分名称,理解比和分数、除法之间的关系。
2.通过教学比和分数、除法的关系,初步渗透事物是普遍联系的辨证唯物主义观点。
引探实践 篇5
⒈课内实践
⑴判断分析(练习十七第4题)
⑵把下面两个量间的关系用比的形式表述出来。
200人一年可造林50公顷。
⑶把下面用分数描述的两个量间的关系转化为比的形式
苹果的个数是梨的4/5
某校初中生人数是是高中生的2倍
⑷填空,比值相同的比为下节课学习基本性质作好准备。
1﹕2 =( )= ( )﹕6=0﹒5﹕( )=1/8﹕( )
⒉课外实践
⑴布置作业
⑵预习“比的基本性质”
出示初学思考题:①什么叫做最简单的整数比?
②怎样化简比?
③化简比和求比值有什么区别和联系?
比的意义优秀教学设计 篇6
教学内容:
人教版小学数学第十一册46页—47页。
教学目标:
1、引导学生在参与、探索的过程中,发现并理解比的意义、比与分数、除法的关系,认识比的各部分的名称,学会求比值。
2、在引导学生知识的发现和探究实践中,培养学生观察、比较、分析事物的能力。发展学生自主探究的意识,并从中感受到数学与生活的密切联系性。
教学重点:比的意义。
教学难点:比和除法、分数之间的联系和区别。
教学过程:
一、回忆生活素材,导入新课。
师;生活中经常有同学说谁比谁高点,谁比谁矮点。也就是说我们要经常比较数量。师:我们学习的数学知识有很多是来源于生活。请同学们根据自己的生活经验估算一下,教室前面的黑板长、宽各大约是多少米?生:长大约是4米,宽大约是3米。师:你们根据这两个数据,你能提出什么问题呢?生1:黑板的面积是多少?
生2:黑板的周长是多少?
生3:长是宽的几倍?板书:4÷1生4:宽是长的几分之几?板书:1÷4
师:长是宽的几倍,宽是长的几分之几是我们以前学过的用除法对黑板的长和宽进行比较,今天,我们要在此基础上,来学习一种新的数学比较方法。(板书:比)
[评析]:著名的教育家布鲁纳曾经说过:探索是数学的生命线。导入新课时,教师能紧密联系学生的生活实际,采用教室里的各种素材引入课题,不仅是学生感到数学知识的亲切自然,而且容易激发学生的学习兴趣和探索意识。
二、充分感知,建构意义1、整理生活素材
师:如长是宽的几倍,除了用4÷1来比较,还可以说成长和宽的比是4比1。(板书:4÷1=4:1)
宽是长的几分之几,除了用1÷4来比较,还可以说成什么呢?(1÷4=1:4)师:同学们用刚才调查方法,说说教室各种事物还能得到什么数据。你还能把它们用比的形式说一说吗?
生1:我班男同学人数是32人,女同学人数是23人。男生与女生的比是32比21。生2:教室里的窗户扇数是48扇,门的扇数是2扇。教室窗户扇数与门扇数的比是48比2。生3:教室的长大约是9米,宽大约是6米。教室长与宽的比是9比6。学生可以说出许许多多的数据。(学生情绪高涨,一分钟后陆续汇报。)
2、再次回忆生活素材,学习新课。师:同学们再仔细观察教室里面还有哪些劳动工具,你平常留意过它们的价格与把数有什么关系吗。我们请两位同学去数一数扫帚的把数,也请全班同学想想每把扫帚要多少钱。根据这些数据你能提什么出什么问题?生:教室里有23把扫帚,从街上买回来要46元钱。生:扫帚总钱数与扫帚把数的比是46比23。(板书:46:23)师:同学们真是聪明,请比较黑板上的最后一组比与前面的几组比在数量上有什么相同和不同的地方。生:前面的比是同一种数量相比较,最后一组比是不同的数量相比较。生:这些相比的数都是只有两个数。师:相同的数量可以进行比较,不同的数量也可以进行比较。相比的数最少要有两个。师:同学们还能说说生活中还有哪些数的比是不同的数相比,请同学们多多举例说明。生:车辆行驶的路程与时间,工作总量与工作时间。等等数据的比都是不同数量的比。生可以举出很多的例子。师:请同学们认真观察黑板是这些数的比是怎么得出来的。谁能说说什么是比?生;这些比都是从两个数相除引出来的,两个数相除又叫做两个数的比。(板书比的定义)师:比是由除法变成的,由于除法的除数不能为零,比的哪一项不能为零呢?请同学们讨论。
3、练习:判断下面各题是否正确,并说明理由。⑴比的前项是0,后项是1。⑵比的前项是1,后项是0。⑶比的前项和后项都是0。
学习比的写法:师:你们学会了比的意义,那么比是怎样写的呢?我们来学习比的写法。请学生自学课本上比的写法。请学生上黑板板书比的各部分名称。师;比是由两个数相除得到的,那么我们可以怎样去求比值呢?生;用比的前项除以比的后项,这就是求比值的方法。师:我可以告诉大家它是一个比。比有时也可以用分数形式表示,如:9:6也可以写成9比6。在这里它不是一个数,是一个比。
师:从这道题你能发现比值的取值范围吗?
生:比值可以是整数,可以是小数,但更多形式是分数。
4、练习①说出下面每个比的前项和后项,并说出比值。
(生积极思考,踊跃回答)师:比除了可以写成这种形式外,还可以写成分数形式。(板书:1:4=),请同学们读一读。特别注意分数形式的比。
[评析]:在这个环节的教学中,教师能采用学生熟悉的事物进行探究,在分析比较中抽象概括出比的意义。同时,教师加强了引导,学生则采用了讨论法、读书自学法来进行探究学习。多种机会的创设,为学生提供了表现自己的机会,也为学生提供了多层次、多规则发展的机会,有助于学生创新能力的提高。
5、比与除法、分数的联系:①比与除法的联系:师:请同学仔细观察比与除法有什么联系?同桌讨论。并填写下表:
比前项比号后项比值
除法
分数
②比与分数之间有什么联系师:请同学们自学课本。同桌讨论。生自学课本,并完成上表。师:可能有的同学发现了三者并不一样,比是表示两数的关系,除法是一种运算,分数是代表一个数的。
在学生初步认识了比的意义后,为了区别数学中的“比”和体育比赛中的“比”的不同,我运用学生活动中常使用的小游戏“锤子、剪子、布”,虽然游戏时间很短,但取得了事半功倍的效果。师:下面请大家来做一个游戏,“锤子、剪子、布”好吗?要求是两人一组,赛四局,然后汇报比分情况。
(学生情绪高涨,一分钟后陆续汇报。)
生1:(很高兴)四局比赛我赢了,4比0。
生2:我和同伴打平局2比2。
生3:我和同桌的比赛结果是2比3。
……
师板书:4:02:32:20:43:1
生:老师,比的后项不能为0,这里为什么是0呢?
生:比赛中的比和我们今天学的比一样吗?
生:这个2:2可以化简比吗?
(没等我组织学生讨论,就有学生站了起来。)
生:2:2只表示双方各得二分,不表示相除关系,不可以化简。
生:4:0表示对方得0分。
……
师:对!说得好。这是比赛中的一种计分形式,目的是让观众看清两队得分情况。
生(杨崇俊):足球比赛的计分也有几比几,但它与今天学的比的意义不同。体育比赛中的比是表示两个数的结果,而我们数学里的比是表示两个数的关系。
[评析]:在本节教学中,我采用了“小游戏”,让学生身临其境,在他们感兴趣的条件下理解“比”的意义。在活动中,学生不是听众,而是参与者,他们可以获得许多不同的感受,并随时提出不同的质疑,无论是质疑还是得到的启迪都是最大的收获,可以说是小小的成功。
因此,教师精心创设探索、操作实践的情境,对学生创新思维的发展至关重要。在今后的教学中,要让学生真切体验、领悟、发现,最大限度地发挥他们的创造潜能,让课堂中的每一分钟都有满分的收获。
三、巩固练习:
①、苹果是梨的,苹果与梨的比是():()
②、我班的男生是女生的1倍,男生人数与女生人数的比是():(),女生人数与男生人数的比是():()
③、400千克与0.2吨的比是():()(能直接说出比吗?为什么)强调不同单位名称不能直接相比。
④开放题:选择合适的数量组成比
我校共有学生780人,教师38人,本学期中平均每个学生获得优点卡3张,五年级有学生170人,本学期共获得优点卡560张,其中五(1)班有男生20人,平均每人获得优点卡3.5张。
学生回答后讲评。
[评析]:数学教育家波利亚指出:学习任何知识的最佳途径是自己去发现。因为这种发现理解最深,也最容易掌握其中的内在规律、性质和联系。对于比与分数、除法之间的联系,采用同桌讨论学习、自学的方法,让他们交流、启发,实现有模糊到清晰的过程,正是让学生充分展现自己思维的过程。最后一个开放题的设计,注意联系了我校的特色建设,让学生在“再创造”的过程中巩固新知,创新思维。
四、小结归纳,应用拓展
全课小结:现在请大家闭上眼睛,想想今天这节课有什么收获?还有什么疑惑?把你的收获说给你的好朋友听,相互评价一下,学得怎么样?如果有什么疑惑,说给大家听,我们一起想办法解决。好不好?
[评析]:新的课程标准强调培养学生的应用意识,要让学生认识到现实生活中蕴含着的大量的数学信息、数学在生活中的重要性。结尾部分重点让学生对本节课的教学内容进行有序地梳理,并且帮助老师解决难题,使学生对所学的内容进行了拓展。同时在相互的评价中,使每个学生进一步体验数学学习的成功感。
课后反思:
《比的意义》是学生初次接触比的知识的第一个内容。能否透彻理解比的意义,对于比其他知识的学习,起到了至关重要的作用。可以说这节内容在整个比的知识中占有举足轻重的地位。并且《比的意义》中包含的知识点比较多,如:比的意义、比的表示方法、比的各部分名称、比值的求法、比与除法和分数之间的联系和区别、比的后项不可为零。如何把这么多的知识,通过学生在自主探究中发现并解决?多个知识点紧促而成功的串联是我课前备课中的一个主体思想。因此入课时,引导学生通过对教室里黑板长与宽的比较,引出“比”来,让学生感受比在实际生活中的应用,这也是我们课题思想的一个体现。接下来每个知识点的教学,始终通过学生的自主探究,在不断发现问题——解决问题——又发现问题的螺旋式上升过程中进行。每一个知识点的出现和解决不是程序式的,而是抓住学生回答中出现的问题展开教学。教师在不是被学生牵着走,而是让学生自己走。游戏和练习题都体现了开放性。这都体现了新课标的理念。本课重点、难点都得到了突破,学生在轻松愉快的氛围中完成了丰富的教学内容。
比的意义教案 篇7
教学目标
1。使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
2。掌握分数除以整数的计算法则,并能正确的进行计算。
3。培养学生分析能力、知识的迁移能力和语言表达能力。
教学重点
正确归纳出分数除以整数的计算法则,并能正确的进行计算。
教学过程
一、复习引新
(一)说出下面各数的倒数。
0.3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说说你是怎样想的,根据是什么。(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算。)
(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来
学习
分数除法。(板书课题:分数除法的意义和计算法则)
二、新授教学
(一)。教学分数除法的意义(演示课件:分数除法的意义)
1、每人吃半块月饼,4个人一共吃多少块月饼?
教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()
2、两块月饼,平均分给4人,每人分得多少块?怎样列式?
列式:2÷4
3、两块月饼,分给每人半块,可以分给几个人?
列式:
教师提问:说一说结果是多少?你是如何得出结果的?
4、组织学生讨论:分数除法的意义。
总结:分数除法的意义与整数除法的'意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
5、练习反馈。
1、出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)
(1)求每段长多少米怎样列算式?
(2)以小组为单位讨论一下得多少呢?
米平均分成2段就是要把6个米平均分成2份,每份是3个米是米。
(3)教师板书整理。
2、教师质疑:如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:
把米铁丝平均分成6段,就是求米的是多少,列式是:
3、教师继续质疑:如果把米铁丝平均分成4段每段长多少米?怎样计算?
为什么采用转化成分数乘法这种方法比较好呢?
组织学生观察在转变中,什么变了,什么没变?讨论分数除以整数的计算法则。
4、学生边概括教师边板书:分数除以整数(0除外)等于分数乘以这个整数的倒数。
三、巩固练习
(一)计算下面各题。
学生独立完成,教师巡视,进行个别辅导。
(二)求未知数
1.2.
(三)判断。
1、分数除法的意义与整数除法的意义相同。()
2、已知两个分数的积与其中一个分数,求另一个分数,用除法解答。()
(四)解答下面各题。
1、把平均分成4份,每份是多少?
2、什么数乘以6等于?
3、一个正方形的周长是米,它的边长是多少米?
四、课堂总结
这节课我们学习了哪些知识?分数除法的意义是什么?分数除以整数的计算法则是什么?还有什么问题?
五、课后作业
(一)计算下面各题。
(二)解下列方程。
六、板书设计
分数除法
比的意义教案 篇8
教材简析:
这部分内容主要教学比的意义、比与分数、除法的关系。例1、例2教学认识比的意义。认识比时,主要利用学生对两个数量之间关系的已有认识,先引导学生分别认识同类量的比(例1)和不同类量的比(例2),并逐步抽象出比的意义。进而引导学生根据比的意义以及分数与除法的关系,主动探索比与分数、除法的关系,自我完善认知结构。在例1、例2随后的“试一试”、“练一练”中,教材都尽可能为学生提供自主探索和尝试的机会,尝试通过学生的独立思考进一步感受比的。意义,并主动探索比与分数、除法的关系。
练习十三中的5个练习题分别从不同的角度对比的意义、比值以及相关知识间的联系进行了合理操练,且形式多样,目的明确。
可以看出教材这样有序的编排、呈现内容,不仅有利于学生在新旧知识之间建立起合适的联系,而且有利于学生主动参与探索活动,并在活动中全面准确的理解比的意义,构建起对比、除法、分数三者之间完整的认知结构。
教学目标:
1、使学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。
2、使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。
3、使学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,体验数学学习的乐趣。
重点:理解比的意义
难点:理解比与分数、除法的关系
教学准备:多媒体课件、挂图、小黑板
教学过程:
一、谈话导入
1、谈话:今天这节课,老师要和同学们一起学习“比”的知识。(板书:比)关于比,你想了解一些什么?(学生可能回答:什么是比?学了“比”有什么用?数学上的“比”与生活中的“比”一样吗?……)
2、教师根据学生的回答进行引发:对,生活中也有“比”,比如一场足球赛的比分是2∶0,它与数学上的“比”一样吗?老师希望通过今天的学习,我们自己来找到这些问题的答案好吗?
设计意图:
开门见山式的揭示课题显的简洁明确,导入通过学生对学习内容的相关议论,引导学生产生了解比、认识比的心理需求,为本课的学习对象创设一个良好的研究氛围。
《比的意义》教案 篇9
教学目标:
1、让同学在实践活动中体验生活中需要比例尺。
2、通过观察、操作与交流,体会比例尺实际意义,了解比例尺的含义。
3、运用比例尺的有关知识,学会解决生活中的一些实际问题。
4、同学在自主探索,合作交流中,逐步形成分析问题、解决问题的能力和创新的意识,体验数学与生活的联系,培养同学用数学眼光观察生活的习惯。
教学重点:
正确理解比例尺的含义。
教学难点:
运用比例尺的有关知识,学会解决生活中的一些实际问题。
教学过程
一、激疑诱趣,引入新知
很多同学都喜欢脑筋急转弯,现在老师给同学们一道脑筋急转弯的题目,让同学们猜猜:坐车从和平县县城到广州市,一共要用4小时,但有只蚂蚁从和平县县城爬到广州市却只用了5秒钟。你知道是怎么回事吗?(蚂蚁可能在地图上爬。)对了。蚂蚁爬的是从和平县县城到广州市的图上距离,而人们坐车所行的是从和平县县城到广州市的实际距离。那图上距离与实际距离之间有什么关系呢?
二、动手操作,认识比例尺
1、操作计算。
(1)画线段。
让我们先来做个最简单的游戏——画线段游戏。我说物品的长度,你用线段画出它的长,行吗?
①橡皮长5厘米
②铅笔长18厘米
③米尺长1米
咦?怎么不画了?(画不下。)那怎么办呀?快想想,有什么好办法,可以把1米画到纸上去?(可以把1米缩小若干倍后画在纸上。)这个办法不错。就用这种方法画吧。
(重点:体会比例尺的实际意义,因为需要所以产生。)
(2)学生画完,集体交流。
你是用图上几厘米的线段来表示实际1米的呢?像2厘米、5厘米、10厘米这些在图上画出的线段的长度,我们叫“图上距离”,而这1米就叫“实际距离”。你能用比表示出图上距离与实际距离的关系吗?(2厘米:1米)
教师指名回答,并板书计算过程。
2、揭示比例尺的意义
其实像这样一幅图的图上距离与实际距离的比,就叫这幅图的`比例尺。这就是我们这节课所要学习的内容—比例尺(板书课题及关系式)根据比与分数的关系,我们还可以把它写成
图上距离/实际距离=比例尺(板书)
21厘米。5厘米。10厘米/一幅图的图上距离 1米/与实际距离的比叫做这幅图的比例尺
同样是1米的米尺的线段图,为什么它的`比例尺却不一样呢?(缩小的倍数不同)
三、探讨比例尺的计算方法
同学们,你们还记得我们上课前所说的一道脑筋急转弯的题目吗?原来坐车是从和平县县城到广州市实际距离约是300千米,而蚂蚁行的是5厘米的图上距离,怪不得只要5秒呢!那么,你能求出这副地图的比例尺吗?(学生做前先交流)
小黑板出示:从和平县县城到广州市实际距离约是300千米,在一副地图上只画了5厘米,这幅图的比例尺是多少?
大家交流一下,谁能告诉大家首先要做什么事情?(先写出图上距离与实际距离的比,再把千米化成厘米,也就是说我们在求比例尺的时候,首先要把单位统一起来。)
学生汇报计算结果。
四、应用比例尺知识解决问题
和平县政府距我校直线距离约200米,可在和平县城的地图上只画了2厘米,这幅图的比例尺是多少?
五、介绍线段比例尺
像前面这些比例尺是用数值来表示图上距离和实际距离关系的比例尺,我们把它们叫做数值比例尺(板书),而像这样的比例尺,是用线段来表示图上距离和实际距离关系,我们把这样的比例尺叫线段比例尺(板书)你能把它改成数值比例尺吗?
六、拓展延伸:认识精密比例尺
画一个物品,如果用1:10 (缩小了)1:1(相同)2:1(放大了)
画的图和实际的图比较结果怎样?(设计意图:让学生抓住1:1000、1:10、1:1、2:1。进一步认识比例尺有大有小,让学生打开思路,不拘一格的从多角度来思考比例尺的意义。结合实际培养学生用数学的眼光观察生活。)
在实际的生活中有没有要用到这种放大比例尺的情况呢?你能猜出工程师是如何把直径5毫米的机器零件画在图纸上的吗?
七、讨论
1、比例尺与一般的尺相同吗?化简后的比例尺带不带单位?
2、求比例尺时,通常要做什么?
3、化简后的比例尺,它的前项和后项一般是什么形式?
八、巩固练习
1、直径5毫米的机器零件,画在图纸上的直径是10厘米。它的比例尺是多少?
2、判断下面的说法是否正确
下面是小聪学习了比例尺后写的一段数学日记
今天我们学习了比例尺,我知道了图上距离比实际距离就等于比例尺。老师叫我们找找比例尺的例子。我想:这岂不是小儿科吗。你瞧,我一口气就能说出几个来:图上长和实际长的比是1:100;图上长和宽的比是1:5;图上宽和实际宽的比是1:2分米;实际距离和图上距离的比是20:1。哈哈,原来比例尺就是这么简单!
九、自我反思,总结评价
这节课你有收获吗?有什么收获呢?我们学会了比例尺的概念,比例尺的关系式、书写形式、比例尺的种类及转换、求比例尺的方法等,谁能来说一下?
同学们的收获的确很大,这节课同学们的表现都很出色,谢谢大家!
比的意义教案教学设计 篇10
教学目标:
1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的'基本性质。
2、通过自主探究,掌握化简比的方法并会化简。
3、渗透事物是普遍联系的辨证唯物主义观点。
教学重难点:
理解比的基本性质,推导化简比的方法正确化简比。
教法:
引导探究
教学过程:
一、导入:
1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。
2、提问:根据这些信息,你能提出什么数学问题?
板书课题:
二、探究新知:
1、学生按学习指南自学。
学习指南:根据题意可以怎样表示长和宽的关系?
2、汇报自学情况
3、教师指导:
长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。
4、苹果有4个,梨有5个。
提问:苹果和梨的关系可以怎样说?
尽量找学困生回答。
5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。
6、学生举例。
请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。
学生互相讨论后,再指名回答。
7、指导学生自学教材后,说说比的含义。
板书课题:比的意义
3比2 3:2
2比3 2:3
100比2 100:2
两个数相除又叫两个数的比。
比的各部分名称
15:10=15÷10=3/2
前项比号后项比值
教师重点指导:
(1)关于“比值通常用分数表示,也可以用小数表示,有时也可能是整数”,你怎样理解?
(2)比的后项为什么不能为0?
比分数除法的联系与区别
三.课堂检测:
1、完成教材第44页“做一做”的第1、2题。
2、完成教材第47页练习十一的第1——3题。
四.小结:
谈一谈本节课的收获。
《比的意义》教学设计 篇11
教学目标
1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。
2、培养学生比较、分析和概括等思维能力。
教学重难点
使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系
教学准备
幻灯片
教学过程设计
教学内容
师生活动
备注
一、 引入新课
二、教学新课
三、巩固联系
四、作业
1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)
引入新课
2、出示两道文字题
(!)3千米是5千米的几分之几?
(2)8吨是4吨的几倍?
学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。
1、学生用十分钟自习书本52到53页
2、问:通过自习你知道了哪些知识?还有哪些疑问?
3、小组内互相说,解决问题。
4、教师请个别同学说,然后师生一起探讨、研究。
5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。
6、说明相关注意点。如:单位、比值、名称、写法、读法。.。.。.
1、书本53页练一练
2、练习十二1、2
练习十二3、4、5
比的意义优秀教学设计 篇12
教材简析:
这部分内容是在学生学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的。比的概念实质是对两个数量进行比较表示两个数量间的倍比关系。任何相关的两个数量的比都可以抽象为两个数的比,既有同类量的比,又有不同类量的比。教材还介绍了每个比中两项的名称和比值的概念,举例说明比值的求法,以及比和除法、分数的关系,着重说明两点:
(1)比值的表示法,通常用分数表示,也可以用小数表示,有的是用整数表示。
(2)比的后项不能是0。
教学内容:
苏教版九年义务教育六年制小学数学第十一册第52~53页比的意义。
教学对象分析:
学生是在学过分数与除法的关系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行学习的。高年级学生具有一定的阅读、理解能力和自学能力,所以在教学时,可组织学生以小组为单位进行研究、探索、讨论、总结,培养学生的创新意识和自主学习能力。
教学目标:
1、理解并掌握比的意义,会正确读写比。
2、记住比各部分的名称,并会正确求比值。
3、理解并灵活掌握比与分数、除法之间的联系,明确比的后项不能是零的道理,同时懂得事物之间是相互联系的。
4、通过主动发现的小组合作学习,激发合作意识,培养比较、分析、抽象、概括和自主学习的能力。
5、养成认真观察、积极思考的良好学习习惯。
教学重点:
理解和运用比的意义及比与除法、分数的联系。
教学难点:
理解比的意义。
教学媒体:
电脑课件、实物投影
教学过程:
一、创设情景,激发兴趣
1、引入:同学们,2008年的北京将要举办什么盛会啊?(北京奥运会),在上届的雅典奥运会上中国代表团取得了非常好的成绩,那么关于奥运会你都知道些什么呢?(学生可以畅所欲言),(播放奥运会的相关资料)在学生说出的资料中选出中国金牌数和俄罗斯金牌数:中国获得金牌32块。俄罗斯27块。
你能列出算式表示中国与俄罗斯所得金牌块数之间的关系吗?(这里可能有学生列加减法,也可能会有除法。选出除法算式分析)
32÷27表示什么意思?(中国得的金牌是俄罗斯的几倍)
27÷32表示什么意思?(俄罗斯得的金牌是的中国的几分之几)
2、联系奥运,分析题目.
在奥运会上,�
看了这一段内容我们都非常的激动,为我们是中国人而感到骄傲和自豪。那你知道刘翔的夺冠成绩是多少吗?(12.91)
那你知道他的速度到底有多快吗?
如果我要你们列式来求该怎么求呢?(110÷12.91)你是根据什么来列式的?(路程÷时间=速度)
看完奥运,我们再来看看我们学校的事情
3、先来做一个小游戏:请栾人璇你们这组同学起立。请其他同学数数他们组女生几人,男生几人?你能用什么式子表示他们组女生人数和男生人数之间的关系?(4÷3和3÷4,分别问学生这两个算式分别表示什么意思?)比的意义教学设计相关内容:分数除法(第5课时)六(下)第一单元比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>>小学六年级数学教案
4、学校用150元买来3个小足球,每个小足球多少元?
(请学生自己读题,说说每道题求的是什么?数量关系是什么?怎样列式?
学生读题回答,教师板书(总价÷数量=单价150÷3)
3、揭示课题:这些题都是用除法算式来表示两种数量的关系的,在日常生活、生产和实验中,常常要对两种数量进行比较,今天我们就来学习一种新的对两个数量进行比较的方法——比。(板书:比)研究比的意义。(板书完整课题)
[设计意图:问题情境的创设主要立足于学生的现实生活,贴近学生的认知背景,设计形象而又蕴含一定的与数学问题有关的情境,在开放性问题情境中,学生思维活跃,并积极主动地从多角度去思考问题,变“让我学”为“我要学”。]
二、自主探究,合作交流
1、比的意义。
(1)那么在刚才的例子当中中国得的金牌是俄罗斯的几倍,用32÷27,现在我们就可以说成中国得的金牌与俄罗斯得的金牌数的比是32比27。
那俄罗斯得的金牌是的中国的几分之几可以怎么说呢?(学生试着说:俄罗斯得的金牌数和中国得的金牌数的比是27比32)
(2)小结:通过以上的学习后,我们知道,谁是谁的几倍或谁是谁的几分之几,又可以说成谁和谁的比。
质疑:可老师还有个疑问,以上两道题都是对中国得的金牌数和俄罗斯得的金牌数进行比较的,为什么一个是32比27,一个是27比32?
引导得出:两个数量进行比较要弄清谁和谁比,谁在前,谁在后,不能颠倒位置,否则,比表示的具体意义就变了。
(2)同学们真聪明,那么你们能像这样把其他的除法算式都变一个说法吗?先同座位两个人互相说说看。(学生同座位两个人说)
都说完了,那谁愿意站起来说一说呢?
(女生人数是男生人数的几倍可以说成女生人数和男生人数的比是4比3)就这样依次说完。
那路程除以时间等于速度可以怎么说啊?(速度可以说成是路程与时间的比)
那单价呢?可以怎么说啊?(单价是总价和数量的比)
在我们常用的数量关系中还有工作效率=工作总量÷工作时间
这里的工作效率还可以怎么说呢?(工作效率就是工作总量个工作时间的比)
[设计意图:考虑到学生对“比”缺乏感性上认知,所以以上的例子采用“导、拨”的方法,引导学生明确:对两个数量进行比较,可以用除法,也可以用比的方法,即谁是谁的几分之倍或几分之几,又可以说成谁和谁的比。既节省了教学时间,也使学生初步理解了比的`意义,充分发挥了教师的引导作用。]
(3)从上面的例子可以看出,对两个数量进行比较,既可以用除法,又可以用比的方法。那什么叫做比呢?请同学们结合板书同位讨论一下。(前后四人讨论)
汇报,板书:两个数相除又叫做两个数的比。(齐读)
你们能不能自己举一个用比表示两数关系的例子?先说原题再把它改编成比的形式(学生自主举例,四人讨论汇报,教师板书)
[设计意图:通过以上例子的学习,使学生由形象感知过渡到建立表象的层面。遵循儿童的认知规律,用同桌之间互相讨论的方式,抽象概括出“比的意义”,同时充分发挥了学生的主体作用。]
(4)练习题:填空。
有5个红球和10个白球,白球和红球个数的比是()比(),红球和白球个数的比是()比()。比的意义教学设计相关内容:分数除法(第5课时)六(下)第一单元比较正数和负数的大小圆柱的表面积练习题分数除法的意义和分数除以整数稍复杂的求一个数的几分之几是多少的应用题《折扣》教案六上综合应用:确定起跑线分数应用题的整理和复习查看更多>>小学六年级数学教案
[设计意图:这是一组对应练习,旨在强化学生对比的意义的初步理解。]
2、比的读写法、各部分名称、求比值的方法以及与除法、分数的联系。
(1)看书自学,小组讨论交流:通过刚才的学习,我们理解了比的意义,在课本的52~53页还涉及到一些关于“比”的其他知识,你们想自己研究、探索吗?老师有个小小的要求,请大家以四人小组为单位进行自学,可以在小组里讨论,然后汇报一下你学会了什么?还有什么疑问?开始吧!
[设计意图:自学课本也是学生探索问题,解决问题的重要途径。根据高年级学生的阅读、理解能力,结合教材的具体内容,充分相信学生,组织学生以小组为单位进行研究、探索、讨论、总结,有利于培养学生的创新意识和实践能力,有利于学生思维发展,有利于培养学生间的合作精神。]
(2)汇报。
1:我学会了比的写法,3比4记作3∶4。(让学生板演)
问:这个“∶”叫做什么呢?谁愿意给它起个名字?(强调:写“∶”应该注意上下对齐,点要圆一点,它不同于冒号。)那么4比3、110比12.51又记作什么?(指名板演,其他同学写在练习本上)3∶44∶3110∶12.91又怎样读呢?
思考:刚才大家学会了用“∶”的形式来写出两个数的比,除了这种形式,还可以写成什么形式呢?(指名板演)读作什么?还可以读作二分之三吗?为什么?(把3∶4改写成分数形式的比,并齐读。)
[设计意图:教材无非是个例子,站在培养学生创新意识的高度重新组合处理教材内容。学生汇报过程中,由教师引导,把“比号”“分数形式的比”前移,这样既符合学生的认知规律,又使课堂教学省时高效。]
2:我学会了比的各部分名称。(结合3∶4来说明)
如果告诉你“男生人数和女生人数的比是3:4”,你能想到些什么?(学生畅所欲言)
3:我学会了什么叫做比值。(比的前项除以后项所得的商叫做比值)
问:那么怎样求比值呢?(前项除以后项的商)
练习题:(课件出示)求出下面各比的比值。3∶40.7∶0.358∶40.2∶1/5
想:比值通常可以是什么数?
[设计意图:比值不同的四个比的举例,既加深了学生对比值意义的理解,又强化了学生对“比”和“比值”的区别。]
4:两数相除又叫做两个数比,看来比和除法之间有着一定的联
系,我们以前也学习过除法和分数的联系,那么比和分数之间是不是也有联系呢?(是)。
出示思考题:比与除法、分数有哪些联系?比与除法、分数又有什么区别?(以前后四人为小组,讨论填写)
相互关系区别比前项:(比号)后项比值一种关系除法被除数÷(除号)除数商一种运算分数分子—(分数线)分母分数值一种数
设计意图:以往教学比与除法、分数三者的联系,主要以教师的讲授为主,费时费力,教学效果也不是最佳的。所以要突破传统的教学模式,不讲授,让学生借助教材、板书、计算机课件的有机结合,总结出三者之间的联系,实现了自主学习。
5:我还知道比的后项不能为“0”。
问:为什么呢?(引导学生从不同角度说明)
三、多层练习,巩固新知