首页 > 报告 > 工作计划 > 教学工作计划 > 七年级上册数学《有理数的加减》教案(推荐17篇)正文

七年级上册数学《有理数的加减》教案(推荐17篇)

时间:2022-12-13 16:08:03

七年级上册数学《有理数的加减教案(精选17篇)

七年级上册数学《有理数的加减》教案 篇1

【第一部分】知识点分布

1、 一元一次方程的解(重点)

2、 一元一次方程的应用(难点)

3、 求解一元一次方程及其在实际问题中的应用(考点)

【第二部分】关于一元一次方程

一、一元一次方程

(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质

(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

【第一部分】知识点分布

1、 一元一次方程的解(重点)

2、 一元一次方程的应用(难点)

3、 求解一元一次方程及其在实际问题中的应用(考点)

【第二部分】关于一元一次方程

一、一元一次方程

(1)含有未知数的等式是方程。

(2)只含有一个未知数(元),未知数的次数都是1的方程叫做一元一次方程。

(3)分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

(4)列方程解决实际问题的步骤:①设未知数;②找等量关系列方程。

(5)求出使方程左右两边的值相等的未知数的值,叫做方程的解。

(6)求方程的解的过程,叫做解方程。

二、等式的性质

(1)用等号“=”表示相等关系的式子叫做等式。

(2)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果a=b,那么a±c=b±c.

(3)等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

如果a=b,那么ac=bc;

如果a=b且c≠0,那么

(4)运用等式的性质时要注意三点:

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(3)工作总量=工作效率×工作时间。

(4)工作量=人均效率×人数×时间。

四、实际问题与一元一次方程

(1)售价指商品卖出去时的的实际售价。

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

(7)应用:行程问题:路程=时间×速度;

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

(4)运用等式的性质时要注意三点:

①等式两边都要参加运算,并且是作同一种运算;

②等式两边加或减,乘或除以的数一定是同一个数或同一个式子;

③等式两边不能都除以0,即0不能作除数或分母。

三、一元一次方程的解

1、解一元一次方程——合并同类项与移项

(1)合并同类项的依据:乘法分配律。合并同类项的作用:是一种恒等变形,起到“化简”的作用,它使方程变得简单,更接近 ·=a(a 常数)的形式。

(2)把等式一边的某项变号后移到另一边,叫做移项。

(3)移项依据:等式的性质1.移项的作用:通过移项,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于·=a(a是常数) 的形式。

2、解一元一次方程——去括号与去分母

(1)方程两边都乘以各分母的最小公倍数,使方程不在含有分母,这样的变形叫做去分母。

(2)顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度。

(3)工作总量=工作效率×工作时间。

(4)工作量=人均效率×人数×时间。

四、实际问题与一元一次方程

(1)售价指商品卖出去时的的实际售价。

(2)进价指的是商家从批发部或厂家批发来的价格。进价指商品的买入价,也称成本价。

(3)标价指的是商家所标出的每件物品的原价。它与售价不同,它指的是原价。

(4)打折指的是原价乘以十分之几或百分之几,则称将标价打了几折。

(5)盈亏问题:利润=售价-成本; 售价=进价+利润;售价=进价+进价×利润率;

(6)产油量=油菜籽亩产量×含油率×种植面积。

(7)应用:行程问题:路程=时间×速度;

工程问题:工作总量=工作效率×时间;

储蓄利润问题:利息=本金×利率×时间;

本息和=本金+利息。

七年级上册数学《有理数的加减》教案 篇2

教学目标

1.知识与技能

(1)能从现实物体中抽象得出几何图形,正确区分立体图形与平面图形;

(2)能把一些立体图形的问题,转化为平面图形进行研究和处理,•探索平面图形与立体图形之间的关系.

2.过程与方法

(1)经历探索平面图形与立体图形之间的关系,发展空间观念,•培养提高观察、分析、抽象、概括的能力,培养动手操作能力.

(2)经历问题解决的过程,提高解决问题的能力.

3.情感态度与价值观

(1)积极参与教学活动过程,形成自觉、认真的学习态度,•培养敢于面对学习困难的精神,感受几何图形的美感;

(2)倡导自主学习和小组合作精神,在独立思考的基础上,•能从小组交流中获益,并对学习过程进行正确评价,体会合作学习的重要性.

重、难点与关键

1.重点:从现实物体中抽象出几何图形,•把立体图形转化为平面图形是重点.

2.难点:立体图形与平面图形之间的转化是难点.

3.关键:从现实情境出发,通过动手操作进行实验,•结合小组交流学习是关键.

教具准备

长方体、正方体、球、圆柱、圆锥等几何体模型,墨水瓶包装盒(每个学生都准备一个)教学挂图

教学过程

一、引入新课

1.打开课本,看第117页城市的现代化建筑,学生认真观看.

2.提出问题:有哪些是我们熟悉的几何图形?

二、新授

1.学生在回顾刚才所看的图后,充分发表自己的意见,并通过小组交流,补充自己的意见,积累小组活动经验.

2.指定一名学生回答问题,并能正确说出这些几何图形的名称. 学生回答:有圆柱、长方体、正方体等等.

教师活动:纠正学生所说几何图形名称中的错误,并出示相应的几何体模型让学生观察它们的特征.

3.立体图形的概念.

(1)长方体、正方体、球、圆柱、圆锥等都是立体图形.

(2)学生活动:看课本图4.1-3后学生思考:这些物体给我们什么样的立体图形的形象?(棱柱和棱锥)

(3)用教学挂图展示图4.1-4

(4)提出问题:在挂图中中,包含哪些简单的平面图形?

(5)探索解决问题的方法.

①学生进行小组交流,教师对各小组进行指导,通过交流,得出问题的答案.

②学生回答:包含的平面图形有长方形、圆、正方形、多边形和三角形等.

4.平面图形的概念.

长方形、正方形、三角形、圆等都是我们十分熟悉的平面图形. 注:对立体图形和平面图形的概念,不要求给出完整的定义,只要求学生能够正确区分立体图形和平面图形.

5.立体图形和平面图形的转化.

(1)从不同方向看:出示课本图4.1-7(1)中所示工件模型,•让学生从不同方向看.

(2)提出问题.

从正面看,从左面看,从上面看,你们会得出什么样的平面图形?能把看到的平面图形画出来吗?

(3)探索解决问题的方法.

①学生活动:让学生从不同方向看工件模型,独立画出得到的各种平面图形.

②进行小组交流,评价各自获得的结论,得出正确结论. ③指定三名学生,板书画出的图形.

6.思考并动手操作.

七年级上册数学《有理数的加减》教案 篇3

教学目标和要求:

1.理解同类项的概念,在具体情景中,认识同类项。

2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流的能力。

3.初步体会数学与人类生活的密切联系。

教学重点和难点:

重点:理解同类项的概念。

难点:根据同类项的概念在多项式中找同类项。

教学方法:

分层次教学,讲授、练习相结合。

教学过程:

一、复习引入:

1、创设问题情境

⑴5个人+8个人=

⑵5只羊+8只羊=

⑶5个人+8只羊=

(数学教学要紧密联系学生的生活实际、学习实际,这是新课程标准所赋予的任务。学生尝试按种类、颜色等多种方法进行分类,一方面可提供学生主动参与的机会,把学生的注意力和思维活动调节到积极状态;另一方面可培养学生思维的灵活性,同时体现分类的思想方法。)

2、观察下列各单项式,把你认为相同类型的式子归为一类。

8x2y,-mn2,5a,-x2y,7mn2,,9a,-,0,0.4mn2,,2xy2。

由学生小组讨论后,按不同标准进行多种分类,教师巡视后把不同的分类方法投影显示。

要求学生观察归为一类的式子,思考它们有什么共同的特征?

请学生说出各自的分类标准,并且肯定每一位学生按不同标准进行的分类。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

二、讲授新课:

1.同类项的定义:

我们常常把具有相同特征的事物归为一类。8x2y与-x2y可以归为一类,2xy2与-可以归为一类,-mn2、7mn2与0.4mn2可以归为一类,5a与9a可以归为一类,还有、0与也可以归为一类。8x2y与-x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地,2xy2与-也只有系数不同,各自所含的字母都是x、y,并且x的指数都是1,y的指数都是2。

像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项(similar terms)。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。

通过特征的讲述,选择所含字母相同,并且相同字母的指数也分别相等的项作为研究对象,并称它们为同类项。(板书课题:同类项。)

(教师为了让学生理解同类项概念,可设问同类项必须满足什么条件,让学生归纳总结。)

板书由学生归纳总结得出的同类项概念以及所有的常数项都是同类项。

2.例题:

例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。

(1)3x与3mx是同类项。 ( ) (2)2ab与-5ab是同类项。 ( )

(3)3x2y与-yx2是同类项。 ( ) (4)5ab2与-2ab2c是同类项。 ( )

(5)23与32是同类项。 ( )

(这组判断题能使学生清楚地理解同类项的概念,其中第(3)题满足同类项的条件,只要运用乘法交换律即可;第(5)题两个都是常数项属于同类项。一部分学生可能会单看指数不同,误认为不是同类项。)

例2:游戏:

规则:一学生说出一个单项式后,指定一位同学回答它的两个同类项。[来源:学|科|网Z|X|X|K]

要求出题同学尽可能使自己的题目与众不同。

可请回答正确的同学向大家介绍写一个单项式同类项的经验,从而揭示同类项的本质特征,透彻理解同类项的概念。

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的程式化做法,并由编题学生指定某位同学回答,可使课堂气氛活跃,学生透彻理解知识,这种形式适合初中生的年龄特征。学生通过一定的尝试后,能得出只要改变单项式的系数,即可得到其同类项,实际是抓住了同类项概念中的两个“相同”,从而深刻揭示了概念的内涵。)

例3:指出下列多项式中的同类项:

(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。

解:(1)3x与-2x是同类项,-2y与3y是同类项,1与-5是同类项。

(2)3x2y与-yx2是同类项,-2xy2与xy2是同类项。

例4:k取何值时,3xky与-x2y是同类项?

解:要使3xky与-x2y是同类项,这两项中x的次数必须相等,即 k=2。所以当k=2时,3xky与-x2y是同类项。

例5:若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。

(1)(s+t)-(s-t)-(s+t)+(s-t);

(2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。

解:略。

(组织学生口头回答上面三个例题,例3多项式中的同类项可由教师标出不同的下划线,并运用投影仪打出书面解答,为合并同类项作准备。例4让学生明确同类项中相同字母的指数也相同。例5必须把(s-t)、(s+t)分别看作一个整体。)

(通过变式训练,可进一步明晰“同类项”的意义,在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、提高识别能力。)

6.五分钟测试:

1、请写出2ab2c3的一个同类项.你能写出多少个?它本身是自己的同类项吗?

(学生先在课本上解答,再回答,若有错误请其他同学及时纠正。)

三、课堂小结:[

①理解同类项的概念,会在多项式中找出同类项,会写出一个单项式的同类项,会判断同类项。

②这堂课运用到分类思想和整体思想等数学思想方法。

③学习同类项的用途是为了简化多项式,为下一课的合并同类项打下基础。

(课堂小结不仅仅是知识点的罗列,应使知识条理化、系统化,应上升到数学思想方法的总结与运用.采用学生相互补充完善,教师适时点拨的课堂小结方式,可训练学生的归纳能力和表达能力,提高学生学习的积极性和主动性。)

四、课堂作业:

若2amb2m+3n与a2n-3b8的和仍是一个单项式,则m与 n的值分别是______。

板书设计:

教学后记:

建立在学生的认知发展水平上,从学生已有的生活经验出发,通过小组讨论,把一些实物进行分类,从而引出同类项这个概念,并通过练习、游戏、合作交流等学习活动让学生更清楚地认识同类项。在整堂课的教学活动中充分体现学生的主体性,向学生提供充分参与数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能,培养学生动手、动口、动脑的能力和学生的合作交流能力。

七年级上册数学《有理数的加减》教案 篇4

教学目标

知识与能力:掌握去括号法则,运用法则,能按要求正确去括号.

过程与方法:经历类比带有括号的有理数的运算,探究、发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力.

情感、态度与价值观:通过参与探究活动,培养学生主动探究、合作交流的意识,严谨治学的学习态度,体会合作与交流的重要性.

教学重难点

重点:去括号法则,准确应用法则将整式化简.

难点:括号前面是“-”号,去括号时括号内各项都变号.

教学过程

一、复习旧知

1. 化简

-(+5) +(+5) -(-7) +(-7)

2. 去括号

① -(3- 7) ② +(3- 7)

二、探索新知

想一想:根据分配律,你能为下面的式子去括号吗?

①+(- a+c) ② - (- a+c)

③ +(a-b+c) ④ -(a-b+c)

观察这两组算式,看看去括号前后,括号里各项的符号有什么变化?

去括号法则:

括号前是“+”号的,把括号和它前面的“+”号去掉,

括号里各项都不改变符号;

括号前是“ - ”号的,把括号和它前面的“ - ”号去掉,

括号里各项都改变符号。

顺口溜:

去括号,看符号;是“+”号,不变号;是“-”号,全变号。

三、巩固练习:

(1)去括号:

a+(b-c)= _______ a- (b-c)= ______

a+(- b+c)= _______ a- (- b+c)= ______

(2)判断正误

a-(b+c)=a-b+c ( )

a-(b-c)=a-b-c ( )

2b+(-3a+1)=2b-3a-1 ( )

3a-(3b-c)=3a-3b+c ( )

四、例题学习:为下面的式子去括号

+3(a - b+c) - 3(a - b+c)

五、课堂检测:

去括号:

① 9(x-z) ②-3(-b+c) ③ 4(-a+b-c) ④ -7(-x-y+z)

六、课堂小结

去括号时应注意的事项:

(1)、去括号时应先判断括号前面是“+”号还是“-”号。

(2)、去括号后,括号内各项符号要么全变号,要么全不变号。

(3)、括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变第一项或前几项的符号。

七、布置作业:

必做题:课本70页习题2.2 第2,3题

选做题:课本70页 习题2.2 第4题

七年级上册数学《有理数的加减》教案 篇5

第1课时认识立体图形与平面图形

教学目标

1.可以从简单实物的外形中抽象出几何图形,并了解立体图形与平面图形的区别;

2.会判断一个几何图形是立体图形还是平面图形,能准确识别棱柱与棱锥.

教学过程

一、情境导入

观察实物及欣赏图片:

我们生活在一个图形的世界中,图形世界是多姿多彩的.其中蕴含着大量的几何图形.本节我们就来研究图形问题.

二、合作探究

探究点一:立体图形

【类型一】 从实物图中抽象立体图形的认识

例1 观察下列实物模型,其形状是圆柱体的是()

解析:圆柱的上下底面都是圆,所以正确的是D.

方法总结:结合实物,认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.

【类型二】 立体图形的名称与分类

例2 如图所示为8个立体图形.

其中,是柱体的序号为________,是锥体的序号为________,是球的序号为________.

解析:分别根据柱体,锥体,球体的定义可得结论,柱体为①②⑤⑦⑧,锥体为④⑥,球为③,故填①②⑤⑦⑧;④⑥;③.

方法总结:正确理解立体图形的定义是解题的关键.

探究点二:平面图形的认识

【类型一】 平面图形的识别

例3 有下列图形,①三角形,②长方形,③平行四边形,④立方体,⑤圆锥,⑥圆柱,⑦圆,⑧球体,其中平面图形的个数为()

A.5个 B.4个

C.3个 D.2个

解析:根据平面图形的定义:一个图形的各部分都在同一个平面内可判断①②③⑦是平面图形.故选B.

方法总结:区分平面图形要记住平面图形的特征,即一个图形的各部分都在同一个平面内.

【类型二】 由平面图形组成的图形

例4 如图所示,各标志的图形主要由哪些简单的平面图形组成?

解:(1)由5个图形组成;

(2)由2个正方形和1个长方形组成;

(3)由3个四边形组成.

方法总结:解决这类问题的关键是正确区分图形的形状和名称.

三、板书设计

1.立体图形

特征:几何图形的各部分不都在同一平面内.

2.平面图形

特征:几何图形的各部分都在同一平面内.

教学反思

本节利用课件展示图片,联系生活实际,激发学习兴趣,调动学生的积极性.使学生以最佳状态投入到学习中去.通过动手操作培养学生动手操作能力,同时也加深了学生对立体图形和平面图形的认识.使学生在讨论交流的基础上总结出立体图形和平面图形的特征.

第2课时从不同的方向看立体图形和立体图形的展开图

教学目标

1.经历从不同方向观察物体的活动过程,初步体会从不同方向观察同一物体可能看到不一样的结果;

2.能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得到的平面图形,了解直棱柱、圆柱、圆锥的展开图或根据展开图判断立体图形.(重点,难点)

教学过程

一、情境导入

《题西林壁》

苏东坡

横看成岭侧成峰,远近高低各不同.

不识庐山真面目,只缘身在此山中.

诗中描绘出诗人面对庐山看到的两幅不同的画面,你能用简洁的图形把它们形象的勾勒出来吗?

二、合作探究

探究点一:从不同的方向观察立体图形

【类型一】 判断从不同的方向看到的图形

例1 沿圆柱体上底面直径截去一部分后的物体如图所示,它从上面看到的图形是()

解析:从上面看依然可得到两个半圆的组合图形.故选D.

方法总结:本题考查了从不同的方向观察物体.在解题时要注意,看不见的线画成虚线,看得见的线画成实线.

【类型二】 画从不同的方向看到的图形

例2 如图所示,由五个小立方体构成的立体图形,请你分别画出从它的正面、左面、上面三个方向看所得到的平面图形.

解析:从正面看所得到的图形,从左往右有三列,分别有1,1,2个小正方形;从左面看所得到的图形,从左往右有两列,分别有2,1个小正方形;从上面看所得到的图形,从左往右有三列,分别有2,1,1个小正方形.

解:如图所示:

方法总结:画出从不同的方向看物体的形状的方法:首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.在画三种视图时,从正面、上面看到的图形要长对正,从正面、左面看到的图形要高平齐,从上面、左面看到的图形要宽相等.

七年级上册数学《有理数的加减》教案 篇6

第一课时

平面图形的认识

教学目标:通过复习使同学进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以和各图形的联系。‘

教学过程:

直线、射线、线段。

提问:1)分别说一说什么叫直线、射线、线段?

直线、射线和线段有什么区别?

完成123页上面的“做一做”。(同学笔做)

提问:1)什么叫做角?

2)角的大小与什么有关?

整理:把表中的空格填写完整。

完成123页下面“做一做”的1题、2题。

锐角

直角

钝角

平角

周角

大于0°

小于90°

垂直与平行

提问:

1)在同一平面内,两条直线的相互位置有哪几种情况?

2)什么样的两条直线叫做互相垂直?

什么样的两条直线叫做互相平行?

回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平

完成教材124页的“做一做”

三角形。

提问:

1)什么叫做三角形?

2)在下面的三角形中,顶点A的对边是指哪一条边?

先笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图)

在下面的表中填写三角形的名称和各自的特征。

名称

图形

特征

回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

四边形

提问:什么叫四边形?

回答:看图说出下面各图的特点,再说一说图中各字母表示什么

想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?

完成125页“做一做”中的1、2题。

七年级上册数学《有理数的加减》教案 篇7

(一)教材所处的地位

人教版《数学》七年级上册第二章,本章由数到式,承前启后,既是有理数的概括与抽象,又是整式乘除和其他代数式运算的基础,也是学习方程、不等式和函数的基础。

(二)单元教学目标

(1)理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

(2)理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。在准确判断、正确合并同类项的基础上,进行整式的加减运算。

(3)理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算律性质在整式的加减运算中仍然成立。

(4)能分析实际问题中的数量关系,并列出整式表示 .体会用字母表示数后,从算术到代数的进步。

(5)渗透数学知识来源于生活,又要为生活而服务的辩证观点;通过由数的加减过渡到整式的加减的过程,培养学生由特殊到一般的思维;体会整式的加减实质上就是去括号,合并同类项,结果总是比原来简洁,体现了数学的简洁美。

(三)单元教学的重难点

(1)重点:理解单项式、多项式的相关概念;熟练进行合并同类项和去括号的运算。

(2)难点:准确地进行合并同类项,准确地处理去括号时的符号。

(四)单元教学思路及策略

(1)注意与小学相关内容的衔接。

(2)加强与实际的联系。

(3)类比“数”学习“式”,加强知识的内在联系,重视数学思想方法的渗透。

(4)抓住重难点、加强练习。

(五)学生学习易错点分析:

(1)忽视单项式的定义,误认为式子 是单项式。

(2)忽视单项式系数的定义,误认为 的系数是4.

(3)忽视单项式的次数的定义,误认为3a的次数是0.

(4)忽视多项式的定义,误认为 是单项式。

(5)忽视多项式的定义,误认为 的次数是7.

(6)忽视多项式的项的定义,误认为多项式 的项分别为 .

(7)把多项式的各项重新排列时,忽视要带它前面的符号。

(8)忽视同类项的定义,误认为2x3y4与-y4x3不是同类项。

(9)合并同类项时,误把字母的指数也相加。

(10) 去括号时符号的处理。

(11)两整式相减时,忽略加括号。

(六)教学建议:

(1)了解整式并学好合并同类项的关键是什么?

整式的加减法,实际上就是合并同类项,同类项的概念以及合并同类项的方法,是本章的重点,而同类项及其合并是以单项式为基础的,所以,单项式的概念或意义是完成合并的关键。

(2)单项式与多项式有什么联系与区别?

教材中先讲单项式、后讲多项式,然后概括为单项式、多项式统称为整式,对于单项式的系数,仅限于数字系数(单项式中的数字因数),这点务求仔细体会,切不可加以引申,而多项式没有系数;对于次数,单项式的次数指,所有字母的指数之和,而多项式的次数是多项式中次数最高的项(单项式)的次数,需要加以注意的问题是:单项式的系数,包括它前面的符号,不要把常数 作为字母,单项式x的系数是1,且单独一个数(零次单项式)或一个字母,也是单项式,对于0也是一个单项式;多项式的每一项都应包含它前面得符号;单项式和多项式得分母中不能含有字母。

(3)学习合并同类项的方法;

先把同类项分别作上记号,然后根据合并同类项的法则进行合并,合并后把多项式按某一字母降幂或升幂排列;当多项式中同类项的系数互为相反数时,合并后为0;

(4)什么是合并同类项中要加以注意的“两同”?

合并同类项是整式加减的基础,深入理解同类项的概念,又是掌握合并同类项的关键,教材中通过一个探究问题(三个填空题)的引入,进行比较、归纳,从而得出判断同类项的 “两同”标准:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项。几个常数项也是同类项,同类项至少有两个,单项式不叫同类项。

(5)其它注意事项:

①整式中,只含一项的是单项式,否则是多项式。分母中含有字母的代数式不是整式,当然也不是单项式或多项式。

②单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数。

③单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号。

④去括号时,要特别注意括号前面是“-”号的情形。

(七)课时安排:

第1课时 单项式

第2课时 多项式

第3课时 整式的加减(1)------合并同类项

第4课时 整式的加减(2)------去括号

第5课时 整式的加减(3)------一般步骤

第6课时 整式的加减(4)------化简求值

第7课时 数学活动

第8课时 复习课

七年级上册数学《有理数的加减》教案 篇8

一、学情介绍

我本学期担任初一七、八班的数学教学工作。初一(八)班共有学生55人,初一(七)班有学生56人。根据小学升初中考试的情况来分析学生的数学成绩不算理想,总体的水平一般,往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,因此要重视听法的指导。学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。初一学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。学生在解题时,在书写上往往存在着条理不清、逻辑混乱的问题,要重视对学生进行写法指导。学生是否掌握良好的记忆方法与其学业成绩的好坏相关,初一学生由于正处在初级的逻辑思维阶段,识记知识时机械记忆的成份较多,理解记忆的成份较少,这就不能适应初一教学的新要求,要重视对学生进行记法指导。本学期的工作重点是扭转学生的学习态度,培养学生的好的学习习惯、创新意识,激发学生学习数学的热情和兴趣,培优补差,同时强调对数学知识的灵活运用,反对死记硬背,以推动数学教学中学生素质的培养。

二、教学措施

1、根据今年学校及教科室计划,认真构建“双思三环六步”课堂教学模式,努力提高课堂教学的有效性和实效性。双思”是指教师反思教学、学生反思学习;“三环”就是定向、内化、发展;“六步”分别是指:提供资源(入境生趣)、了解学情(自学生疑)、弄清疑难(学习释疑)、点难拨疑(练习解难)、反思教学(反思学习)、引导实践(迁移创新)。我们要在反思中成长,学生要在反思中进步;我们要反思的主要内容是怎样优化“三环六步”教学设计,不断提高课堂教学效率;学生要反思的主要内容学习积极性、学习策略和学习方法运用是否得当、不断提高学习效率。

初一学生刚刚进入初中阶段,正是从小学过度到初中学习的重要阶段,也是进行“双思三环六步”课堂教学模式的时期,要逐步的培养和完善这种模式,要求我们多研究、多思考、多创新、多探究。按照“低(起点)慢(速度)多(落点)高(标准)”元素结构教学法进行教学,“低起点”考虑到学生的基础,初一学生从小学数学到初中数学的学习是一个飞跃,怎样帮助学生慢慢过渡是一个难点,从细小的问题、每一个小知识点出发结合小学知识融汇到初中的知识中去,从而使学生很快接受知识。“慢速度”反对快速度教学,主张教学要考虑学生的学习规律和接受程度,兼顾初一学生的生理、心理、知识、能力、意志、品德等特征和差异,步步为营,梯次推进,使学生有效地掌握知识和培养能力。“多落点”强调教育要考虑到初一学生个性差异的特点。个性差异是表现在多方面,不仅有年龄、性别、性格、身体的差异,还有很多学习上的差异,个人思维方式、生活方式的差异。推动不同层次的学生都有收获。“高标准”为学生确立的学习标准。而且把目标细化,使学生能很快达到,既能掌握知识又能体会到成功的愉悦,使初一的学生对数学充满兴趣,从而达到高效课堂的标准。

2、精心设计习题,使习题从简单到复杂形成梯度,引导学生学会发散思维,培养学生创造性思维的能力,实现一题多解、举一反三、触类旁通,培养思维的灵活性。

3、批改作业做到全批全改,从过程到步骤严格要求,发现问题及时解决作认好总结,从初一使学生慢慢养成认真按步骤做作业的习惯。

4、继续实行课前一题的模式。课前五分钟每个班的课代表把上一节课涉及到的典型题目呈现在黑板上,学生在解题的过程中复习上一节的内容,而且也能做到尽快把学生从课间拉回到上课的的状态,并力求把学生中新方法新思维挖掘出来。

5、实行一对一的帮扶活动,由好学生带动一个差一点的学生,从知识、作业、学习习惯等各方面互帮互助,从而全面提高学生的综合素质。

三、合理落实各项教学常规

1、备好课是上好课的基础,是提高课堂教学质量的关键。根据“双思三环六步”课堂教学模式,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,准备大量的、难度不同的习题备用,备课以个人独立钻研备课为主,在此基础上进行集体备课,广泛吸取其他老师的优点和精华,完善自己的备课达到精益求精。

2、上课时要严格按照“双思三环六步”课堂教学模式的步骤进行教学,讲课时要围绕中心内容,突出重点,突破难点。整个教学过程要严密组织,使课堂教学既层次分明,又协调紧凑。教学时要面向全体学生,使各类学生都学有所得。特别是要照顾到差生,力求使他们能掌握本课时的基本知识和技能。

七年级上册数学《有理数的加减》教案 篇9

【学习目标】

1、理解什么是一元一次方程。

2、理 解什么是方程的解及解方程,学会检验一个数值是不是方程的 解的方法。

【重点难点】能验证一个数是否是一个方程 的解。

【导学指导】

一、温故知新

1:前面学 过有关方程的一些 知识,同学们能说出什么是方程吗?

答: 叫做方程。

2: 判断下列是不是 方程,是打“√”,不是打“×”:

① ;( ) ②3+4=7;( )

③ ;( )④ ;( )

⑤ ;( ) ⑥ ;( )

二、自主探究

1. 一元一次方程的概念

观察下面方程的特点

(1)4 =24;(2)1700+150=2450

(3)0.52`-(1-0.52`)=80

小结:象上面方程,它们都含有 个未知数(元),未知数的次数都是 ,这样的方程叫做一元一次方程。

(即方程的一边或两边含有未知数)

2.方程的解

如何求出使方程左右两边相等的未知数的值?

如方程 =4中, =?

方程 中的 呢?

请用小学所学过的逆运算尝试解决上面的问题。

解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

例 检验2和-3是否为方程 的解。

解:当`=2时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=2 方程的解(填是或不是)

当`= 时,

左边= = ,

右边= = ,

∵左边 右边(填=或≠)

∴`=3 方程的解(填是或不是)

【课堂练习】

1.判断下列是不是一元一次方程,是打“√”,不是打“×”:

① =4;( ) ② ;( )

③ ; ( ) ④ ; ( )

⑤ ; ( ) ⑥3+4 =7 ;( )

2.检验3和-1是否为方程 的解。

3.`=1是下列方程( )的解:

(A) , ( B) ,

(C) ), ( D)

4 、已知方程 是关于`的一元一次方程,则a= 。

【要点归纳】:

1. 这节课我们学习了什么内容?

2.什么是方程的解?如何检验一个数是否是方程的解?

【拓展训练】:

1.检验2和 是否为方程 的解。

2.老师要求把一篇有20__字的文章输入电脑,小明输入了700字,剩下的让小华输入,小华平均每分钟能输入50个字,问:小华要多少分钟才能完成?(请设未知数列出方程,并尝试求出 方程的解)

七年级上册数学《有理数的加减》教案 篇10

一、学生起点分析

学生的知识技能基础:学生在小学已经学习过算术四则运算,而初中的有理数运算是以小学算术四则运算为基础的,不同的是有理数运算多了一个符号问题。符号法则是有理数运算法则的重要组成部分,也是学生学习本章知识和今后学习其他与计算有关的内容时容易出错的知识点之一。

学生活动经验基础:在前面相关知识的学习过程中,学生已经经历了一些数学活动,感受到了数的范围的扩大,能借助生活经验对一些简单的实际问题进行有理数的运算,如计算比赛的得分,计算温差等等。同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定数学交流的能力。

学生学习中的困难预设:学生学习数学是一种认识过程,要遵循一般的认识规律,而七年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需要通过绝对值大小的比较来确定和的符号和加法转化为减法两个过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度,在教学时应从实例出发,充分利用教材中的正负抵消的思想,用数形结合的观点加以解释,让学生感知法则的由来,以突破这一难点。

二、教学任务分析

对于有理数的运算,首先在于运算的意义的理解,即首先要回答为什么要进行运算。为此,必须让学生通过具体的问题情境,认识到运算的作用,加深学生对运算本身意义的理解,同时也让学生体会到运算的应用,从而培养学生一定的应用意识和能力。教科书基于学生学习了相反数和绝对值基础之上,提出了本课时的具体学习任务:探索有理数的加法运算法则,进行有理数的加法运算。本课时的教学重点是有理数加法法则的探索过程,利用有理数的加法法则进行计算,教学难点是异号两数相加的法则。教学方法是“引导——分类——归纳”。本课时的教学目标如下:

1.经历探索有理数加法法则的过程,理解有理数的加法法则;

2.能熟练进行整数加法运算;

3.培养学生的数学交流和归纳猜想的能力;

4.渗透分类、探索、归纳等思想方法,使学生了解研究数学的一些基本方法。

三、教学过程设计

本课时设计了六个教学环节:第一环节:复习引入,提出问题;第二环节:活动探究,猜想结论;第三环节:验证明确结论;第四环节:运用巩固;第五环节:课堂小结;第六环节:布置作业。

(一)复习引入,提出问题

活动内容:

1.复习提问:

(1)下列各组数中,哪一个较大?

(2)一位同学在一条东西方向的跑道上,先向东走了20米,又向西走了30米,能否确定他现在的位置位于出发点的哪个方向,与原来出发的位置相距多少米?若向东记为正,向西记为负,该问题用算式表示为 。

活动目的:我们已经熟悉正数的运算,然而实际问题中做加法运算的数有可能超出正数范围。这里先让学生回顾在具体问题中感受正数和负数的加法运算。

2.提出问题:

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分.

如果我们用1个 表示+1,用1个 ,那么 就表示0,同样 也表示0.

(1)计算(-2)+(-3).

在方框中放进2个 和3个 :

因此,(-2)+(-3)= -5.

用类似的方法计算(2)(-3)+ 2

(3) 3 +(-2)

(4) 4+(-4)

思考: 两个有理数相加,还有哪些不同的情形?举例说明。

引导学生列举两个正数相加,如3 + 2,一个数和零相加,如0+(-4),4 + 0。

活动目的:通过实际问题情境类比列出两个有理数相加的7种不同情形,两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。进而讨论如何进行一般的有理数加法的运算。

活动的实际效果: 实际问题情境为学生营造了良好的学习氛围,利于他们积极探究.

(二)活动探究,猜想结论:

上面我们列出了两个有理数相加的7种不同情形,并根据它们的具体意义得出了它们相加的和.但是,要计算两个有理数相加所得的和,我们总不能一直用这种方法.现在请同学们仔细观察比较这7个算式,你能从中发现有理数加法的运算法则吗?也就是结果的符号怎么定?绝对值怎么算?

学生分组进行活动,教师关注学生在活动中的表现,可以根据学生的实际情况给予适当点拨和引导,鼓励学生大胆发表自己的意见,最后形成统一的认识。

对“一起探究”,教师可引导学生按以下步骤思考:

1、观察列出的具体算式,根据两个加数的符号分类:两个正数相加、两个负数相加,异号两数相加(根据绝对值又可分为三类)、一个加数为0。

2、同号两数相加时,和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎样的关系?异号两数相加时和的符号与两个加数的符号有怎样的关系?和的绝对值和加数的绝对值有怎么样的关系?有一个加数为0时,和是什么?

3、从中归纳概括出规律

在学生探究的基础上,教师引出规定的加法法则。

在活动中,尽可能让学生独立完成,必要时可以交流,教师只在适当的时候给予帮助。

同号两数相加,取相同的符号,并把绝对值相加。

异号两数相加,绝对值值相等时和为0;绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

一个数同0相加,仍得这个数。

活动目的:利用分组讨论、分类归纳帮助学生理解加法运算过程,同时有利于加法运算法则的归纳。

活动的实际效果:由于采用了图示的教学手段,在教师的引导下让学生分类观察,发现规律,用自己的语言表达规律,最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则.通过实际问题情境,让学生亲身参加了探索发现,获取知识和技能的全过程。理解有理数加法法则规定的合理性,培养了学生的分类和归纳概括的能力。

(三)验证明确结论:

例1 计算下列算式的结果,并说明理由:

(1) 180 +(-10) (2) (-10)+(-1);

(3)5+(-5); (4) 0+(-2)

活动目的:给学生提供示范,进行有理数加法,可以按照“一观察,二确定,三求和”的步骤进行,一观察是指观察两个加数是同号还是异号,二确定是指确定“和”的符号,三求和是指计算“和”的绝对值.

活动的实际效果:通过习题,加深了学生对有理数加法法则的理解。

(四)运用巩固:

活动内容:

1. 口答下列算式的结果

(1) (+4)+(+3); (2) (-4)+(-3);

(3)(+4)+(-3); (4) (+3)+(-4);

(5)(+4)+(-4); (6) (-3)+0

(7) 0+(+2); (8) 0+0.

活动目的:通过这组练习,让学生进一步巩固有理数加法的法则,达到熟练程度。

2.请同学们完成书上的随堂练习:

(1)(-25)+(-7); (2)(-13)+5;

(3)(-23)+0; (4)45+(-45)

全班学生书面练习,四位学生板演,教师对学生板演进行讲评.

活动目的:习题的配备上,注意到学生的思维是一个循序渐进的过程,所以由易到难,使学生在练习的过程中能够逐步地提高能力,得到发展。

活动的实际效果: 通过练习进一步熟悉有理数的加法法则。通过口答、演排纠错,活跃课堂气氛,充分调动学生的积极性,学生在一种比较活跃的氛围中,解决各种(五)课堂小结:

活动内容:师生共同总结。

1. 两个有理数相加,“一观察,二确定,三求和”,即首先判断加法类型,再确定和的符号,最后确定和的绝对值

2. 有理数加法法则及其应用。

3. 注意异号的情况。

活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的。

活动的实际效果: 学生对“一观察,二确定,三求和”的步骤印象较深,达到了本节课的教学目标。

七年级上册数学《有理数的加减》教案 篇11

1.熟练地进行有理数加减混合运算,并利用运算律简化运算;

2. 培养学生的运算能力。

加减运算法则和加法运算律。

省略加号与括号的计算。

电脑、投影仪

一、从学生原有认知结构提出问题

说出-6+9-8-7+3两种读法.

二、解决问题

1.计算:(1)-12+11-8+39; (2)+45-9-91+5;

(3)-5-5-3-3; (4)-6-8-2+3.54-4.72+16.46-5.28;

2.用较简便方法计算:

-16+25+16-15+4-10.

三、应用、拓展

例1.计算:2/3-1/8-(-1/3)+(-3/8)

练一练:1.P46第1题(1)-(4)题;P46问题解决

例2.当a=13,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:

(1)a-(b+c); (2)a-b-c; (3)a-(b+c+d); (4)a-b-c-d;

(5)a-(b-d); (6)a-b+d; (7)(a+b)-(c+d); (8)a+b-c-d;

(9)(a-c)-(b-d); (10)a-c-b+d.

请同学们观察一下计算结果,可以发现什么规律?

练一练:1.当a=2.7,b=-3.2,c=-1.8时,求下列代数式的值:

(1)a+b-c; (2)a-b+c; (3)-a+b-c; (4)-a-b+c.

2.分别根据下列条件求代数式·-y-z+w的值:

(1)·=-3,y=-2,z=0,w=5;

(2)·=0.3,y=-0.7,z=1.1,w=-2.1;

七年级上册数学《有理数的加减》教案 篇12

学习目标:

1、理解加减法统一成加法运算的意义.

2、会将有理数的加减混合运算转化为有理数的加法运算.

3、培养学习数学的兴趣,增强学习数学的信心.

学习重点、难点:有理数加减法统一成加法运算

教学方法:讲练相结合

教学过程

一、学前准备

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化 上升4.5千米 下降3.2千米 上升1.1千米 下降1.4千米

记作 +4.5千米 —3.2千米 +1.1千米 —1.4千米

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了 千米.

2、你是怎么算出来的,方法是

二、探究新知

1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.

3、师生共同归纳:遇到一个式子既有加法,又有减法,第一步应该先把减法转化为 .再把加号记在脑子里,省略不写

如:(-20)+(+3)-(-5)-(+7) 有加法也有减法

=(-20)+(+3)+(+5)+(-7) 先把减法转化为加法

= -20+3+5-7 再把加号记在脑子里,省略不写

可以读作:“负20、正3、正5、负7的 ”或者“负20加3加5减7”.

4、师生完整写出解题过程

三、解决问题

1、解决引例中的问题,再比较前面的方法,你的感觉是

2、例题:计算-4.4-(-4 )-(+2 )+(-2 )+12.4

3、练习:计算 1)(—7)—(+5)+(—4)—(—10)

三、巩固

1、小结:说说这节课的收获

2、P241、2

3、计算

1)27—18+(—7)—32 2)

四、作业

1、P255 2、P26第8题、14题

七年级上册数学《有理数的加减》教案 篇13

教学目标

1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;

2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;

3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;

4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;

5.本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

教学建议

(一)重点、难点分析

本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。难点是有理数的加法法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。

(二)知识结构

(三)教法建议

1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2.有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。

4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

6.在探讨导出有理数的加法法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。

教学设计示例

有理数的加法(第一课时)

教学目的

1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.

2.通过有理数的加法运算,培养学生的运算能力.

教学重点与难点

重点:熟练应用有理数的加法法则进行加法运算.

难点:有理数的加法法则的理解.

教学过程

(一)复习提问

1.有理数是怎么分类的?

2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

-3与-2;|3|与|-3|;|-3|与0;

-2与|+1|;-|+4|与|-3|.

(二)引入新课

在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.

(三)进行新课 有理数的加法(板书课题)

例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?

两次行走后距原点0为8米,应该用加法.

为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

1.同号两数相加

(1)某人向东走5米,再向东走3米,两次一共走了多少米?

这是求两次行走的路程的和.

5+3=8

用数轴表示如图

从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

显然,两次一共向西走了8米

(-5)+(-3)=-8

用数轴表示如图

从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

总之,同号两数相加,取相同的符号,并把绝对值相加.

例如,(-4)+(-5),……同号两数相加

(-4)+(-5)=-( ),…取相同的符号

4+5=9……把绝对值相加

∴ (-4)+(-5)=-9.

口答练习:

(1)举例说明算式7+9的实际意义?

(2)(-20)+(-13)=?

(3)

2.异号两数相加

(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

5+(-5)=0

可知,互为相反数的两个数相加,和为零.

(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

就是 5+(-3)=2.

(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

就是 3+(-5)=-2.

请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?

最后归纳

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.

例如(-8)+5……绝对值不相等的异号两数相加

8>5

(-8)+5=-( )……取绝对值较大的加数符号

8-5=3 ……用较大的绝对值减去较小的绝对值

∴(-8)+5=-3.

口答练习

用算式表示:温度由-4℃上升7℃,达到什么温度.

(-4)+7=3(℃)

3.一个数和零相加

(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

显然,5+0=5.结果向东走了5米.

(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

请同学们把(1)、(2)画出图来

由(1),(2)得出:一个数同0相加,仍得这个数.

总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

有理数加法运算的三种情况:

特例:两个互为相反数相加;

(3)一个数和零相加.

每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

(四)例题分析

例1 计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

例2

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值.

.(强调“两个较大”“一个较小”)

解:#FormatImgID_13#

解题时,先确定和的符号,后计算和的绝对值.

(五)巩固练习

1.计算(口答)

(1)4+9;(2) 4+(-9);(3)-4+9;(4)(-4)+(-9);

(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;

2.计算

(1)5+(-22);(2)(-1.3)+(-8)

(3)(-0.9)+1.5;(4)2.7+(-3.5)

七年级上册数学《有理数的加减》教案 篇14

一、三维目标。

(一)知识与技能。

能运用运算律探究去括号法则,并且利用去括号法则将整式化简。

(二)过程与方法。

经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养学生观察、分析、归纳能力。

(三)情感态度与价值观。

培养学生主动探究、合作交流的意识,严谨治学的学习态度。

二、教学重、难点与关键。

1、重点:去括号法则,准确应用法则将整式化简。

2、难点:括号前面是—号去括号时,括号内各项变号容易产生错误。

3、关键:准确理解去括号法则。

三、教具准备。

投影仪。

四、教学过程,课堂引入。

利用合并同类项可以把一个多项式化简,在实际问题中,往往列出的式子含有括号,那么该怎样化简呢?

五、新授。

现在我们来看本章引言中的问题(3):

在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为100t+120(t-0.5)千米 ①

冻土地段与非冻土地段相差100t—120(t-0.5)千米 ②

上面的式子①、②都带有括号,它们应如何化简?

利用分配律,可以去括号,合并同类项,得:

100t+120(t-0.5)=100t+120t+120(-0.5)=220t-60

七年级上册数学《有理数的加减》教案 篇15

1、内容结构分析

《九年义务教育课程标准实验教科书·数学》七年级上册第四章是“几何图形初步”.这一章是义务教育第三学段“空间与图形”领域的起始章,在这一章,将在前面两个学段学习的“空间与图形”内容的基础上,让学生进一步欣赏丰富多彩的图形世界,看到更多的立体图形与平面图形,初步了解立体图形与平面图形之间的关系,并通过线段和角认识一些简单的图形,并能初步进行应用.

2、教学重点与难点:

教学重点:

⑴ 数学与我们的成长密切相关;

⑵ 数学伴随着人类的进步与发展,人类离不开数学;

⑶人人都能学会数学,激发学生学习数学的兴趣;

⑷将实际问题转化为数学问题;

⑸积极参与数学学习活动,体验数学活动充满着探索与创造,感受数学的严谨性及数学规律的准确性.

教学难点:

⑴体会数学与我们的成长密切相关;

⑵学生剪图拼图的具体操作;

⑶尝试发现,提出并解决数学问题,体会与人合作交流的重要性.

3、教学目标:

⑴知识与技能:

直观认识立体图形,掌握平面图形的基本知识;画出简单立体图形的三视图及平面展开图,根据三视图画出一些简单的实物图;进行线段的简单计算,正确区分线段、射线、直线.掌握角的基本概念,进行相关运算;巩固对角得度量及运算知识的掌握,能解决一些实际问题.

⑵过程与方法:

通过对本章的学习,学会在具体的2情境中,抽象概括出数学原理;学会在解决问题的过程中,进行合理的想象,进行简单的、有条理的思考;通过小组合作、动手操作、实验验证的方法解决数学问题.

⑶情感、态度与价值观:

在探索知识之间的相互联系及应用的过程中,体验推理的意义,获取学习的经验.

4、课时分配

4.1几何图形 4课时

4.2直线、射线、线段 3课时

4.3角 2课时

4.4课题学习 2课时

小结 3课时

单元测试与评讲 3课时

七年级上册数学《有理数的加减》教案 篇16

教材分析:

《解一元一次方程(一)合并同类项与移项》是义务教育教科书七年级数学上册第三章第二节的内容。在此之前,学生已学会了有理数运算,掌握了单项式、多项式的有关概念及同类项、合并同类项,和等式性质,进一步将所学知识运用到解方程中。这为过渡到本节的学习起着铺垫作用。合并同类项与移项是解方程的基础,解方程它的移项根据是等式性质1、系数化为1它的根据是等式性质2,解方程是今后进一步学习不可缺少的知识。因而,解方程是初中数学中必须要掌握的重点内容。

设计思路:

《数学课程标准》中明确指出:学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。基于以上理念,结合本节课内容及学生情况,教学设计中采用了探究发现法和多媒体辅助教学法,在学生已有的知识储备基础上,利用课件,鼓励和引导学生采用自主探索与合作交流相结合的方式进行学习,让学生始终处于积极探索的过程中,通过学生动手练习,动脑思考,完成教学任务。其基本程序设计为:

复习回顾、设问题导入 探索规律、形成解法 例题讲解、熟练运算

巩固练习、内化升华 回顾反思、进行小结 达标测试、反馈情况

作业布置、反馈情况。

教学目标:

1、知识与技能:(1)通过分析实际问题中的数量关系,建立方程解决实际问题,进一步认识方程模型的重要性;(2)、掌握移项方法,学会解“a·+b=c·+d”的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

2、过程与方法:通过解形如“a·+b=c·+d”形式的方程,体验数学的建模思想。

3、情感、态度与价值观:通过合作探究,培养学生积极思考、勇于探索的精神。

教学重点:建立方程解决实际问题,会解“a·+b=c·+d”类型的一元一次方程。

教学难点:分析实际问题中的相等关系,列出方程。

教学方法:先学后教,当堂训练。

教学准备:多媒体课件等。

预习要求:要求学生自学教材第88——89页的课文内容。然后根据自己的理解分析问题2及例2;并试着进行尝试练习。找出自学中存在的问题,以便课堂学习中解决。

教学过程:

一、准备阶段:

1、知识回顾:

(1)、用合并同类项的方法解一元一次方程的步骤是什么?

(2)、解下列方程:

① -3·-2·=10 ②

2、创设问题情境,导入新课。

问题:

把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

如何解决这个问题呢?

二、导学阶段:

(一)、出示本节课的学习目标:

1、通过分析实际问题中的数量关系,建立用方程解决问题的建模思想和方法;

2、掌握移项方法,学会解“a·+b=c·+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想。

(二)、合作交流,探究新知

1、分析解决课前提出的问题。

问题:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少人?

分析: 设这个班有·名学生.

每人分3本,共分出___本,加上剩余的20本,这批书共____________本.

每人分4本,需要______本,减去缺的25本,这批书共____________本.

这批书的总数有几种表示法?它们之间有什么关系?本题哪个相等关系可作为列方程的依据呢?

这批书的总数是一个定值,表示它的两个式子应相等,

即表示同一个量的两个不同的式子相等.

根据这一相等关系列得方程:

方程的两边都有含·的项(3·和4·)和不含字母的常数项(20与-25),怎样才能使它向 ·=a(常数)的形式转化呢?

方法过程:

2、总结移项的概念。

像上面这样把等式一边的某项变号后移到另一边,叫做 “移项” .

3、思考:上面解方程中“移项”起到了什么作用?

4、例题学习

运用移项的方法解下列方程:

三、课堂练习:

运用移项的方法解下列方程:

四、课堂小结:

本节课,我们学习了哪些知识?你还有哪些困惑?

五、达标测试:

运用移项的方法解下列方程:(25′×4=100′)

六、预习作业:

1、预习作业:自学课本第90页的课文内容及例4,完成第90页练习2题;

2、课后作业:(1)

七年级上册数学《有理数的加减》教案 篇17

教学目的和要求:

1.使学生了解有理数加法的意义。

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

3.培养学生分析问题、解决问题的能力,在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力。(在教学中适当渗透分类讨论思想)

教学重点和难点:

重点:理解有理数加法法则,运用有理数加法法则进行有理数加法运算。

难点:理解有理数加法法则,尤其是异号两数相加的情形。

教学工具和方法:

工具:应用投影仪,投影片。

方法:分层次教学,讲授、练习相结合。(采取合作探究式教学方法,让学生在合作学习中学习知识,掌握方法。)

教学过程:

一、复习引入:

1.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。现在引入了负数,数的范围扩充到了有理数。那么,如何进行有理数的运算呢?

2.问题:[

一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?

我们知道,求两次运动的总结果,可以用加法来解答。可是上述问题不能得到确定答案,因为问题中并未指出行走方向。(大部分同学都会用小学学过的的知识来完成。先给予肯定,鼓励同学们对小学知识的掌握程度,再鼓励同学们想想还有没有其他情况)

[来源:学#科#网]

二、讲授新课:

1.发现、总结(分类):

我们必须把问题说得明确些,并规定向东为正,向西为负。

(同号两数相加法则)

(1)若两次都是向东走,很明显,一共向东走 了50米,写成算式就是: (+20)+(+30)=+50,

即这位同学位于原来位置的东方50米处。这一运算在数轴上表示如图:

(2)若两次都是向西走,则他现在位于原来位置的西方50米处,

写成算式就是: (―20)+(―30)=―50。

(师生共同归纳同号两数相加法则:[来源:Z+··+]

同号两数相加,取相同的符号,并把绝对值相加)

(异号两数相加法则)

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:

写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。即这位同学位于原来位置的( )方( )米处。

后两种情形中,两个加数符号不同(通常可称异号),所得和的符号似乎不能确定,让我们再试几次(下式中的加数不妨仍可看作运动的方向和路程):

你能发现和与两个加数的符号和绝对值之间有什么关系吗?

(+4)+(―3)=( ); (+3)+(―10)=( );

(―5)+(+7)=( ); (―6)+ 2 = ( )。

再看两种特殊情形:

(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)=( )。

(6)第一次向西走了30米,第二次没走.写成算式是:(―30)+ 0 =( )。我们不难得出它们的结果。

(师生共同归纳异号两数相加法则:

绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值)

(互为相反数的两数相加为零

问题:会不会出现和为0的情况?

(5)第一次向西走了30米,第二次向东走了30米.写成算式是:(―30)+(+30)= ( )。

师生共同归纳法则3:互为相反数的两数相加得0)

问题:你能有法则来解释法则3吗?

学生回答:可以用异号两数相加的法则)

((6)第一次向西走了30米,第二次没走.写成算式是:(―30)+0= ( )。我们不难得出它们的结果。

一般地,一个数同0相加,仍得这个数)

2.概括:

综合以上情形,我们得到有理数的加法法则:

(1) 同号两数相加,取相同的符号,并把绝对值相加;

(2) 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;

(3) 互为相反数的两个数相加得0;

(4)一个数同0相加,仍得这个数.

注意:

一个有理数由符号和绝对值两部分组成,所以进行加法运算时,必须分别确定和的符号和绝对值.这与小学阶段学习加法运算不同。

3.例题:

例:计算:

(1)(+2)+(―11);(2)(+20)+(+12);(3);(4)(―3.4)+4.3。

解:(1)解原式=―(11―2)=―9;

(2)解原式=+(20+12)=+32=32;

(3)解原式=;

(4)解原式= +(4.3―3.4)=0.9。

4.五分钟测试:

计算: (1) (+3)+(+7);(2)(―10)+(―3);(3)(+6)+(―5);(4)0+(―5)。

三、课堂小结:

这节课我们从实例出发,经过比较、归纳,得出了有理数加法的法则.今后我们经常要用类似的思想方法研究其他问题.

应用有理数加法法则进行计算时,要同时注意确定“和”的符号、计算“和”的绝对值两件事。

(运算的关键:先分类,在按法则运算

运算步骤:先确定符号,再计算绝对值

注意问题:要借助数轴来进一步验证有理数的加法法则)

四、课堂作业:

课本:P18:1,2,3。

板书设计:

教学后记:

Copyright © 热范文 All Rights Reserved.